
ProLog

by BIM

V O L U M E O N E

ProLog by BIM - 3.0

Credits and
Acknowledgements

Trademarks

Prolog by BIM (originally BIM_Prolog) is a Prolog implementation resulting from a
joint project between BIM and the Department of Computer Science of the K.U.L.
(Katholieke Universiteit Leuven) in Belgium. This project was made possible thanks to
ongoing support from DPWB/SPPS (Diensten voor de Programmatie van het Wetensc
hapsbeleid - Services pour la Programmation de la Politique Scientifique, Belgium) and
the European Commission in the context of the ESPRIT research programme.

XView, SunView, SunWindows, XI 1/NeWS, SunOS, and the combination of Sun with
a numeric suffix are trademarks of Sun Microsystems, Ine.
DEC is a trademark of Digital Equipment Corporation.
Sybase is a trademark of Sybase, Ine.
SunUNIFY is atrademark of Sun Microsystems, Ine. and is derived from UNIFY, a
product of Unify Corp.
SunINGRES is a trademark of Sun Microsystems, Ine. and is derived from INGRES a
product of Relational Technology.
INGRES is a trademark of Relational Technology.
UNIX is a trademark of AT&T Bell Laboratories.

Copyright © 1990 by BIM sa/nv - Kwikstraat, 4 - 3078 Everberg - Belgium.
Phone: +32 2 759 59 25 Fax: +32 2 759 47 95

November 1990

ProLog by BIM - 3.0

November 1990

ProLog by BIM - 3.0 - Reference Manual

Symbols A
!/0 3-91
% notation 3-19
**/2 3-77
*/2 3-77
+/1 3-77
+12 3-77
///2 3-77
H2 3-77
W2 3-77
-/I 3-77
-/2 3-77
</2 3-83
<</2 3-77
<>/2 3-83
=../2 3-36, 5-9
=/2 3-81
=:=/2 3-83
=</2 3-83
==/2 3-80
=\=/2 3-83
->/2 3-93
>/2 3-83
>=/2 3-83
>>/2 3-77
?/l 3-76
?=/2 3-81
@</2 3-84
@=</2 3-84
@>/2 3-84
@>=/2 3-84
\+/l 3-90
V/2 3-77
VI 3-77
\=/2 3-81
\==/2 3-80
A/2 3-77

abolish/1 3-47
abolish/2 3-47
abort/O 3-94
abs/1 3-77
absolute value 3-77
acos/1 3-77
addition 3-77
advance (debugger command) 7-31
algorithmic debugging 7-30
alias (debugger command) 7-8, 7-20, 7-31
all_directives/0 3-61, 3-63, 5-9
all_directives/l 3-63, 5-9
all_functors/l 3-64
all_open_files/l 3-25
alldynamic/O (directive) 4-4
analyze/0 7-30
arg/3 3-37
argc/1 1-3,3-99
argument

command level 3-99
modes 3-3, 4-6
types 3-3

argv/1 1-3,3-99
argv/2 1-3,3-99
arithmetic 3-76

assignment 3-76
comparison 3-83
functions 3-77
in-line evaluation 3-31
pointer 3-78
real 3-78

arity
functor 2-3
maximum 2-3
predicate 2-3

arrays - simulating 3-55, 3-59
ASCII code

conversion 3-33
manipulation 3-35
reading 3-13

ascii/2 3-33, 5-9

November 1990

Index ProLog by BIM - 3.0 - Reference Manual

asciilist/2 3-35
asin/1 3-77
assert facts or predicates 3-43
assert/1 3-43
assert/2 3-43
asserta/1 3-44
assertz/1 3-44
assignment arithmetic 3-76
atan/1 3-77
atan2/2 3-77
atom

concatenation 3-39
conversion 3-33, 3-42
datatypes 2-3
inquiry 3-63
manipulation 3-33, 3-39
writing into 3-17

atom/1 3-72
atomconcat/2 3-39
atomconcat/3 3-39
atomconstruct/3 3-40
atomic/1 3-73
atomlength/2 3-39
atompart/4 3-40
atompartsall/3 3-40
atomtolist/2 3-16,3-34,5-9
atomverify/3 3-41
atomverify/5 3-41

B
back (debugger command) 7-24, 7-31
backp (debugger command) 7-20
backtracking

extemal predicates ELI 6-47
read 3-12

Backus-Naur form 2-4
bagof/3 3-87,3-89
ball-catcher link 3-92
bctr/1 3-13
bctr/2 3-12

BIM_Prolog_call_predicate() 6-58
BIM_PROLOG_DIR 1-14, 3-98
BIM_Prolog_error_message() 6-60
BIM_Prolog_get_name_arity() 6-57
BIM_Prolog_get_predicate() 6-57
BIM_Prolog_get_term_arg() 6-80
BIM_Prolog_get_term_type() 6-79
BIM_Prolog_get_term_value() 6-79
B IM_PROLOG_LIB 1-14,3-98
BIM_Prolog_new_term() 6-81
BIM_Prolog_next_call() 6-59
BIM_Prolog_protect_term() 6-83
BIM_Prolog_rm_all_mrepeat() 6-47
BIM_Prolog_rm_mrepeat() 6-47
BIM_Prolog_setup_call() 6-59
BIM_Prolog_string_to_atom() 6-57, 6-84
BIM_Prolog_strings_to_atom() 6-84
BIM_Prolog_term_space() 6-81
BIM_Prolog_terminate_call() 6-59
BIM_Prolog_unify_term_value() 6-81
BIM_Prolog_unify_terms() 6-82
BIM_Prolog_unprotect_term() 6-83
BIMerrgen 1-27
BIMlinker 1-25, 1-25, 6-5

examples 1-31
options 1-26
symbol table 1-27

BIMpcomp 1-19
options 1-20

BIMprolog 1-3
options 1-3
syntax 1-3

bitwise operations 3-77
block/3 3-92
BNF see Backus-Naur form
box model 7-1,7-15
BP_... (ELI) 6-58
break point 7-23

window 8-23
builtin modules 5-6
button (debugger command) 7-20

11 November 1990

ProLog by BIM - 3.0 - Reference Manual Index

c
ELI passing specification 6-24
ELI types 6-16

call (debugger command) 7-31
call/1 3-90
case conversion 3-42
catch & throw 3-92
characters

case conversion 3-42
reading 3-12, 3-13
writing 3-18

clause
reference 3-50
retrieval 3-48

clause/2 3-48, 3-67
clause/3 3-49
clear (debugger command) 7-24
close/1 3-5
command (debugger command) 7-8
command level argument 3-99
comparison 3-80

arithmetic 3-83
directives 4-5
Standard order 3-83

compatibility 3-31
syntax 2-8

compatibility/O (directive) 4-5
compiler 1-19, 3-65

invoking 1-19
options 1-13,1-20
see BIMpcomp
tables 1-20

concatenation atoms 3-39
condition 3-93
consult/1 1-20, 3-65, 8-16
Consulting

files 1-4,3-65,8-15
initial 1-13
libraries 1-14

cont (debugger command) 7-24

control
execution 3-91
stepping debugger 7-16
tables 1-6

conventions for run-time system 1-29
conversion

ASCII code 3-33
atom 3-33
case 3-42
datatypes 3-33
terms 3-36

cos/1 3-77
cputime/1 3-98
creating customized development system 1-28
creating run-time system 1-29
creep (debugger command) 7-21
csh/0 3-97
current_atom/l 3-63
current_functor/2 3-64
currentJkey/l 3-58
current_key/2 3-57
current_op/3 3-63
current_predicate/2 3-63
cut/1 3-91

D
database (internal)

assert 3-43
clause referenced 3-50
clause retrieval 3-48
global values 3-55
manipulation 3-43, 3-50
retract 3-46
test predicates 3-54
update 3-45
variablenames 3-44

database_functor/l 3-74
datatypes 3-72

atom 2-3
conversion 3-33
ELI parameters 6-15

111November 1990

Index ProLog by BIM - 3.0 - Reference Manual

ELI restrictions 6-19,6-63
functor 2-3
integer 2-3
lists 2-3
manipulation 3-33
pointers 2-3
predicates 2-3
range 2-3
real 2-3
test 3-72

DCG see definite clause grammar
debug code 7-5
debug mode 7-16
debug/0 7-16, 8-18
debug/1 7-7
debug/2 7-7, 8-17
debugger 7-1

algorithmic debugging 7-30
analysis algorithm 7-30
box model 7-1,7-15
Controlling port selection 7-19
Controlling stepping debugger 7-16
debug code 3-31,7-5
debug mode 7-16
directives 4-4, 7-5
environment 3-31
error messages 9-15
invoking 7-16
leashing 7-19
leaving 7-16
multiple commands 7-9
options 1-12
output 7-7, 7-10
overall control 7-7
port indicator symbols 7-11
post mortem 7-1,7-29
preparation 7-5
programming environment 7-1
setting and removing spypoints 7-17
source line debugging 7-1,7-23
spypoints 7-17

checking mode 7-16
stepping debugger 7-15

window 8-18
trace 7-10

analysis 7-30
mode 7-16
recording 7-29
window 8-19

window 8-3, 8-17, 8-20
debugger command

advance 7-31
alias 7-8,7-20,7-31
back 7-24, 7-31
backp 7-20
button 7-20
call 7-31
clear 7-24
command 7-8
cont 7-24
creep 7-21
delete 7-24
Depth 7-21
detail 7-32
down 7-24
exit 7-32
fail 7-21
failure 7-32
Failures 7-32
file 7-24
go on 7-21
help 7-20, 7-32
invest 7-32
leap 7-21
list 7-25
menu 7-21
Module 7-21
next 7-25
nextp 7-21
pred 7-25
Prefix 7-21
print 7-25
prolog 7-21
quit 7-22, 7-32
Quotes 7-22
redo 7-22

November 1990

ProLog by BIM - 3.0 - Reference Manual Index

run 7-16
show 7-25
skip 7-22
status 7-25
step 7-25
stop at 7-25
stop in 7-25
Trace 7-22
unbutton 7-22
unmenu 7-22
up 7-24
where 7-22

DEC-10 compatiblity see compatibility
DEC-10 syntax 2-8
defaults database 8-3
definite clause grammar 3-48

rules 2-11
delete (debugger command) 7-24
Depth (debugger command) 7-21
detail (debugger command) 7-32
development system 1-25

creation 1-28
directives 4-3

alldynamic/0 4-4
compatibility/O 4-5
dynamic/1 4-4
effect on module qualification 5-10
extern_clear/0 6-10
extern_clear/l 6-10
extem_function/l 6-9
extem_function/2 6-8
extem_function/3 6-8
extem_go/0 6-10
extem_language/l 6-7
extem_load/2 6-6
extem_load/3 6-6
extem_name_address/3 6-11
extem_predicate/l 6-8
extem_predicate/2 6-7
extem_predicate/3 6-7
global/1 5-5
hide/0 4-5
import/1 5-5

include/1 4-5
index/2 4-7
listing 3-61
local/1 5-4
mode/1 4-6
module 5-3
module/1 4-9, 5-3
nohide/0 4-5
op/3 4-8
option/1 4-3, 7-5
setdebug/0 4-4, 7-5
setnodebug/0 4-4, 7-5
wam_uppercase/0 2-8, 4-5

display/1 3-17
display/2 3-17
division 3-77
double precision arithmetic 3-78
double precision reals 2-3
down (debugger command) 7-24
dynamic predicate 4-4, 1-21
dynamic/1 5-10
dynamic/1 (directive) 3-53, 4-4
dynamic_functor/l 3-74

E
ELI 6-1

access to Prolog 6-57
backtracking external predicates 6-47
C passing specification 6-24
C types 6-16
calling Prolog predicates 6-58
compile command 6-12
datatypes 6-61

conversion 6-83
parameter 6-15
restrictions 6-19, 6-63

directives 6-6
error messages 6-60,9-13
examples 6-48, 6-86
Fortran passing specification 6-35
Fortran types 6-17

November 1990

Index ProLog by BIM - 3.0 - Reference Manual

interactive linking 6-10
iteration controller 6-47
libraries 6-12
mapping

declarations 6-15
inquiry 6-11

multiple solution call 6-59
objects 6-12
parameter

mapping declarations 6-61
modes 6-18, 6-62
passing rules 6-21, 6-64
passing specification 6-23, 6-65

Pascal passing specification 6-41
Pascal types 6-17
representation of terms 6-77
retrieving terms 6-79
simulating backtracking 6-47
single solution call 6-58
Standard libraries 6-12
structures 6-18,6-62
term

construction 6-81
decomposition 6-79
lifetime 6-83
representation 6-77
retrieving 6-79

embedded system 1-31
emq see explicit module qualification
end of file 1-10, 3-4, 3-24, 3-31
engine 1-3

Consulting libraries 1-14
initial consult 1-13
options 1-3
please options 1-9

envdebug 3-31
environment 3-31

Windows 8-3
eof/0 3-24
eof/1 3-24
equality 3-80
erase/1 3-56, 3-57
erase_all/0 3-57

erase_all/l 3-57
err_class/4 3-104
err_msg_range/2 3-105
err_ordinal/2 3-105
error

classes 9-1
description file 1-27, 3-104
handling 3-103
messages 3-31,9-1

ELI 6-60
status 3-103

error output stream 3-7
errorjoad/l 3-104
error_message/2 3-103
error_msg/2 3-106
error_print/0 3-103
error_raise/3 3-103
error_status/3 3-9, 3-103
escape character 3-31
evaluation

expressions 3-76
in-line 3-31

execution control 3-91
existential quantification 3-88
exists/1 3-26
exit

from BIM_Prolog 3-95
from query 3-94

exit (debugger command) 7-32
exit/0 3-94
exit_block/l 3-92
exp/1 3-77
expand_path/2 3-98
explicit module qualification 5-8

writing 3-16, 3-32
exponentiation 3-77
expressions

evaluation 3-76
in-line evaluation 3-31

expressions - allowed functors
**/2 3-77
*/2 3-77
+/1 3-77

VI November 1990

ProLog by BIM - 3.0 - Reference Manual Index

+/2 3-77
1112 3-77
H2 3-77
N2 3-77
-/I 3-77
-/2 3-77
« 1 2 3-77
>>/2 3-77
?/l 3-76
V/2 3-77
VI 3-77
a/2 3-77
abs/1 3-77
acos/1 3-77
asin/1 3-77
atan/1 3-77
atan2/2 3-77
cos/1 3-77
exp/1 3-77
is/2 3-76
log/1 3-77
log 10/0 3-77
mod/2 3-77
pointeroffset/3 3-78
pow/2 3-77
random/1 3-79
real/1 3-77
round/1 3-77
sign/1 3-77
sin/1 3-77
sqrt/1 3-77
srandom/1 3-79
tan/1 3-77
trunc/1 3-77, 3-78

extem_clear/0 6-10
extern_clear/l 6-10
extern_function/l 6-9
extem_function/2 6-8
extern_function/3 6-8
extern_go/0 6-10
extern_language/l 6-7
extern_load/2 (directive)
extem_load/3 (directive)

extem_name_address/3 6-11
extem_predicate/l 6-8
extem_predicate/2 6-7
extem_predicate/3 6-7
extemal language interface see ELI
external_functor/l 3-74

F
fail (debugger command) 7-21
fail/0 3-91
failure (debugger command) 7-32
Failures (debugger command) 7-32
fclose/1 3-5
file (debugger command) 7-24
file pointer position 3-23
filename expansion 1-22
files

Consulting 1-4, 3-65, 8-15
error description 1-27
existing file 3-26
inclusion 4-5
intermediate 1-4
listing 1-4
maximum number 3-4
open files 3-25
opening and closing 3-5
pointer position 3-23
reading 3-9
reconsulting 1-21
redirection 3-6
source 1-4
status of operations 3-24
window 8-15
writing 3-15

findall/3 3-87
flisting/1 3-62
flisting/2 3-62
flush/0 3-23

6-6 flush/1 3-23
6-6 flush_err/0 3-23

fopen/3 3-5

V llNovember 1990

Index ProLog by BIM - 3.0 - Reference Manual I

formatted write predicates 3-19
Fortran

ELI passing specification 6-35
ELI types 6-17

free (argument) 3-3
fseek/2 3-23
ftell/2 3-23
full tracing mode 7-16
functor 3-74

conversion 3-36
datatypes 2-3
inquiry 3-63
maximum arity 2-3
testing 3-74

functor/3 3-36, 5-9

G
garbage collection 1-5, 1-7
generation random integers 3-79
get/1 3-13
gei/2 3-13
getO/1 3-13
getO/2 3-13
getenv/2 3-97
global

modules 5-8
Stacks 3-55, 3-58
values 3-55

global/1 (directive) 5-5
go on (debugger command) 7-21
ground (argument) 3-3
ground/1 3-72

H
halt/0 3-95
handling see manipulation
has_a_definition/l 3-54
hashing 1-21, 3-53, 4-7

help (debugger command) 7-20, 7-32
hidden_functor/l 3-74
hide/0 (directive) 4-5
hide/1 3-67
hiding 3-67

directives 4-5

I
I/O builtin predicates 3-4
if then eise 3-93
implied local/l directive 5-4, 5-10
import/1 (directive) 5-5
include/1 (directive) 4-5
inclusion of files 4-5
incremental linking 6-5
index/2 3-53
index/2 (directive) 4-7, 5-10
indexing 3-53
information/0 3-95
information/1 3-95
information/2 3-95
initial consult 1-13
in-line evaluation 3-31,3-76
input see reading
input stream 3-7
install_external_handler/2 3-100
i nstal Lpro) ogjiandler/2 3-100
integer

datatype 2-3
division 3-77

integer/1 3-72
interactive linking 6-10
intermediate code file 1-4
inttoatom/2 3-33
invest (debugger command) 7-32
iprompt/1 3-25
is/2 3-76
is_a_key/l 3-57
is_a_key/2 3-57
iteration controller ELI 6-47

V lll November 1990

ProLog by BIM - 3.0 - Reference Manual Index

local/l (directive) 4-4, 4-6, 4-7, 4-8, 5-4
log/1 3-77
log 10/1 3-77
loop 3-93
lowertoupper/2 3-42

M
manipulation

arguments 3-36
ASCII code 3-35
atoms 3-33, 3-39
error 3-103
error messages 3-31
functors 3-36
integers 3-34
lists 3-34
pointers 3-34
program 3-61
Prolog database 3-43
reals 3-33
signal 3-100
tables 3-70
terms 3-36

mark and cut 3-91
mark/1 3-91
mark-repeat/2 6-47
master window 8-3, 8-5
mathematical functions 3-77
menu (debugger command) 7-21
metacall 3-90
metalevel 3-87
mlisting/1 3-62, 5-7
mlisting/2 3-62
mod/2 3-77
mod_unif/2 3-69, 5-7
mode/1 3-53,5-10
mode/1 (directive) 4-6
modes

arguments 4-6
directives 4-6
ELI parameters 6-62

parameters ELI 6-18
testing 3-72

Module (debugger command) 7-21
module/1 3-69,5-6,5-10
module/1 (directive) 4-9, 5-3
module/2 3-69, 5-6
module/3 3-69, 5-6
modules 3-69

directives 4-9, 5-3
effect on directives 5-10
interactive mode 5-10
listing 3-62
qualification rules 5-8
writing 3-16

modulo 3-77
monitor 8-3

environment 3-31
window 8-6

multiplication 3-77

N
name/2 3-16, 3-35, 5-9
negation 3-90
next (debugger command) 7-25
nextp (debugger command) 7-21
nl/0 3-20
nl/1 3-20
nodebug/0 7-16
nohide/0 (directive) 4-5
nonvar/1 3-72
nospy/0 7-18
nospy/1 7-18
nospy/2 7-18
nospy/3 8-18
not/1 3-90
notrace/0 7-16
number/1 3-73
numbervars/3 3-38, 5-9
numbervars/4 3-37, 5-9

November 1990 ix

Index ProLog by BIM - 3.0 - Reference Manual

modules 3-69
directives 4-9, 5-3
effect on directives 5-10
interactive mode 5-10
listing 3-62
qualification rules 5-8
writing 3-16

modulo 3-77
monitor 8-3

environment 3-31
window 8-6

multiplication 3-77

N
name/2 3-16,3-35,5-9
negation 3-90
next (debugger command) 7-25
nextp (debugger command) 7-21
nl/0 3-20
nl/1 3-20
nodebug/0 7-16
nohide/0 (directive) 4-5
nonvar/1 3-72
nospy/0 7-18
nospy/1 7-18
nospy/2 7-18
nospy/3 8-18
not/1 3-90
notrace/0 7-16
number/1 3-73
numbervars/3 3-38, 5-9
numbervars/4 3-37, 5-9

O
occur/2 3-82
occurs/2 3-82
op/3 3-68, 5-10
op/3 (directive) 4-8

operators 3-68,4-8,4-10
directive 4-8
precedence 2-9
writing 3-17

optimisation 3-53, 4-6
indexing 4-7
modes 4-6

option/1 (directive) 4-3, 7-5
options

BIMlinker 1-26
BIMpcomp 1-20
BIMprolog 1-3
compiler 1-13,1-20
consult conventions 3-65
debugger 1-12
directives 4-3
please 1-10
please options 3-31
please/2 3-31
tables 1-5, 1-9
user defined 1-3

order Standard 3-83
ordering criteria 3-83
output from the debugger 7-10
output see writing
output stream 3-6

P
parameter

ELI mapping declarations 6-15, 6-61
ELI modes 6-18,6-62
ELI passing rules 6-21, 6-64
ELI passing specification 6-23, 6-65

partial (argument) 3-3
Pascal

ELI passing specification 6-41
ELI types 6-17

please options 1-9,1-10, 3-31
please/2 3-31, 7-6, 8-3
pointer/1 3-73
pointeroffset/3 3-78

November 1990

ProLog by BIM - 3.0 - Reference Manual Index

pointers
arithmetic 3-78
datatype 2-3
manipulation 3-34

pointertoatom/2 3-34
pointertoint/2 3-34
port indicator Symbols 7-11
portray/1 3-22
portray/2 3-22
post mortem 7-1
post mortem debugging 7-29
pow/2 3-77
pread/2 3-10, 3-25
pread/3 3-10
precedence operators 2-9
precision 3-78
pred (debugger command) 7-25
predicate_type/2 3-74, 3-75
predicates

arity 2-3
called by ELI 6-58
datatype 2-3
dynamic 4-4
hiding 4-5
inquiry 3-63
maximum arity 2-3
module qualification 5-9
modules 5-6
static 4-4
type 3-75
window 8-12

predicates - atoms and lists
atomconcat/2 3-39
atomconcat/3 3-39
atomconstruct/3 3-40
atomlength/2 3-39
atompart/4 3-40
atompartsall/3 3-40
atomverify/3 3-41
atomverify/5 3-41
current_atom/l 3-63
lowertoupper/2 3-42

predicates - clauses
clause/2 3-48, 3-67
clause/3 3-49
flisting/1 3-62
flisting/2 3-62
listing/0 3-61, 3-67
listing/1 3-61, 8-14
mlisting/1 3-62
mlisting/2 3-62
vclause/3 3-49
vclause/4 3-50

predicates - clauses (referenced)
rassert/2 3-50
rassert/3 3-50
rasserta/2 3-51
rassertz/2 3-51
rclause/3 3-51
rclause/4 3-51
rdefined/1 3-53
rretract/1 3-52
rretract/2 3-52
rretract/3 3-52
rvassert/4 3-50
rvclause/4 3-52
rvclause/5 3-52

predicates - command level
argc/1 3-99
argv/1 3-99
argv/2 3-99

predicates - comparison
</2 3-83
<>/2 3-83
=:=/2 3-83
=</2 3-83
==/2 3-80
=\=/2 3-83
>/2 3-83
>=/2 3-83
@</2 3-84
@=</2 3-84
@>/2 3-84
@>=/2 3-84

November 1990 XI

Index ProLog by BIM - 3.0 - Reference Manual

\==/2 3-80
predicates - control

!/0 3-91
->/2 3-93
abort/0 3-94
block/3 3-92
cut/1 3-91
exit/0 3-94
exit_block/1 3-92
fail/0 3-91
mark/1 3-91
repeat/0 3-93
true/1 3-91

predicates - conversion
=../2 3-36
arg/3 3-37
ascii/2 3-33
asciilist/2 3-35
atomtolist/2 3-34
functor/3 3-36
inttoatom/2 3-33
name/2 3-35
pointertoatom/2 3-34
pointertoint/2 3-34
realtoatom/2 3-33

predicates - database (internal)
abolish/1 3-47
abolish/2 3-47
assert/1 3-43
assert/2 3-43
asserta/1 3-44
assertz/1 3-44
current_key/l 3-58
current_key/2 3-57
erase/1 3-56, 3-57
erase_all/0 3-57
erase_all/l 3-57
hide/1 3-67
index/2 3-53
is_a_key/l 3-57
is_a_key/2 3-57
mode/1 3-53
record/2 3-55

record/3 3-55
record_pop/2 3-58
record_pop/3 3-58
record_push/2 3-59
record_push/3 3-59
recorded/2 3-56
recorded/3 3-56
recorded_arg/3 3-60
recorded_arg/4 3-59
rehash/2 3-54
rerecord/2 3-56
rerecord/3 3-55
rerecord_arg/3 3-60
rerecord_arg/4 3-60
retract/1 3-46, 3-48
retract/2 3-46
retractall/1 3-47
update/1 3-45
vassert/2 3-44
vassert/3 3-44

predicates - debugger
analyze/0 7-30
debug/0 7-16, 8-18
debug/1 7-7
debug/2 7-7, 8-17
keeptrace/0 7-29, 8-18
leash/1 7-19, 8-18
nodebug/0 7-16
nospy/0 7-18
nospy/1 7-18
nospy/2 7-18
nospy/3 8-18
notrace/0 7-16
showleash/0 7-19
showports/1 7-19, 8-18
showspy/0 7-17
showspydefault/0 7-17
spy/0 7-17
spy/1 7-17
spy/2 7-18
spy/3 8-18
spydefault/1 7-17, 8-18
trace/0 7-16,8-18

X ll
November 1990

ProLog by BIM - 3.0 - Reference Manual

zoomld/2 7-30, 8-19
zoomln/2 7-30, 8-19

predicates - directives
all_directives/0 3-61, 3-63
all_directives/l 3-63

predicates - ELI
extem_clear/0 6-10
extem_clear/l 6-10
extern jfunction/1 6-9
extem_function/2 6-8
extem_function/3 6-8
extern_go/0 6-10
extem_language/l 6-7
extem_name_address/3 6-11
extem_predicate/l 6-8
extem_predicate/2 6-7
extem_predicate/3 6-7
mark_repeat/2 6-47
recent_mrepeat/2 6-47

predicates - error handling
err_class/4 3-104
err_msg_range/2 3-105
err_ordinal/2 3-105
errorJoad/1 3-104
error_message/2 3-103
error_msg/2 3-106
error_print/0 3-103
error_raise/3 3-103
error_status/3 3-103

predicates - general
all_functors/l 3-64
consult/1 1-20, 3-65, 8-16
current_functor/2 3-64
current_op/3 3-63
current_predicate/2 3-63
numbervars/3 3-38
numbervars/4 3-37
op/3 3-68
reconsult/1 3-66, 8-16
table/2 3-70

predicates - I/O
all_open_files/l 3-25
flush/0 3-23

flush/1 3-23
flush_err/0 3-23
fseek/2 3-23
ftell/2 3-23
iprompt/1 3-25
prompt/1 3-25

predicates - I/O (files)
close/1 3-5
exists/1 3-26
fclose/1 3-5
fopen/3 3-5

predicates - I/O (reading)
bctr/1 3-13
bctr/2 3-12
eof/0 3-24
eof/1 3-24
get/1 3-13
get/2 3-13
getO/1 3-13
getO/2 3-13
pread/2 3-10
pread/3 3-10
pvread/3 3-11
pvread/4 3-11
read/1 3-9,3-15,3-25
read/2 3-9,3-15,3-25
readc/1 3-12
readc/2 3-12
readln/1 3-12
readln/2 3-12
skip/1 3-14
skip/2 3-14
sread/2 3-11
svread/3 3-11
vread/2 3-10
vread/3 3-10

predicates - I/O (redirection)
see/1 3-7,3-25
seeing/1 3-7
seen/0 3-7
seeptr/1 3-7
tell/1 3-6,3-25
tell_err/l 3-7

November 1990

Index ProLog by BIM - 3.0 - Reference Manual

tell_errptr/l 3-8
telling/1 3-6
telling_err/l 3-8
tellptr/1 3-6
told/0 3-6
told_err/0 3-7

predicates - I/O (writing)
display/1 3-17
display/2 3-17
nl/0 3-20
nl/1 3-20
portray/1 3-22
portray/2 3-22
print/1 3-22
print/2 3-22
printf/2 3-20
printf/3 3-19
put/1 3-18
put/2 3-18
spaces/1 3-21
spaces/2 3-20
sprintf/3 3-20
svwrite/3 3-18
swrite/2 3-17
tab/1 3-21
tab/2 3-21
vwrite/2 3-17
vwrite/3 3-17
write/1 3-15, 3-22
write/2 3-15
writem/1 3-16
writem/2 3-16
writeq/1 3-16
writeq/2 3-15

predicates - metalevel
\+/l 3-90
bagof/3 3-87,3-89
call/1 3-90
findall/3 3-87
not/1 3-90
setof/3 3-89

predicates - modules 5-7
mod_unif/2 3-69, 5-7

module/1 3-69, 5-6
module/2 3-69, 5-6
module/3 3-69, 5-6
writem/1 5-7
writem/2 5-7

predicates - O.S. calls
csh/0 3-97
expand_path/2 3-98
getenv/2 3-97
sh/0 3-97
Shell/1 3-97
system/1 3-97

predicates - signal handling
install_external_handler/2
install_prolog_handler/2 3
signal/2 3-101
toplevel/1 3-102
wait/0 3-102
wait/1 3-102
which_extemal_handler/2
which_prolog_handler/2 3

predicates - sorting
keysort/2 3-85
keysort/3 3-85
keysort/4 3-86
sort/2 3-84

predicates - system control
halt/0 3-95
information/0 3-95
information/1 3-95
information/2 3-95
please/2 3-31, 7-6, 8-3
save/1 3-95
statistics/0 3-96
statistics/3 3-96
stop/0 3-95
table/2 8-10

predicates - test
atom/1 3-72
atomic/1 3-73
database_functor/l 3-74
dynamic_functor/l 3-74
external_functor/l 3-74

3-100
-100

3-101
-101

XIV November 1990

ProLog by BIM - 3.0 - Reference Manual Index

ground/l 3-72
has_a_definition/l 3-54
hidden_functor/l 3-74
integer/1 3-72
nonvar/1 3-72
number/1 3-73
pointer/1 3-73
predicate - type/2 3-74
predicate_type/2 3-75
real/1 3-72
static_functor/l 3-74
term_type/2 3-73
var/1 3-72

predicates - time predicates 3-98
cputime/1 3-98
time/1 3-98
time/2 3-98

predicates - unification
=/2 3-81
?=/2 3-81
\=/2 3-81
mod_unif/2 5-7
occur/2 3-82
occurs/2 3-82

Prefix (debugger command) 7-21
print (debugger command) 7-25
print/1 3-22
print/2 3-22
printf/2 3-20
printf/3 3-19
program

manipulation 3-61
Organization for BIMlinker 1-30

programming environment 1-10, 7-1
ProLog

engine 1-3
syntax 2-4

prolog (debugger command) 7-21
Prolog database manipulation 3-43
prompt/1 3-25
put/1 3-18
put/2 3-18
pvread 3-25

pvread/3 3-11
pvread/4 3-11

Q
querymode 1-10,3-31
quit (debugger command) 7-22, 7-32
Quotes (debugger command) 7-22

R
random generator 3-79
random/1 3-79
range datatypes 2-3
rassert/2 3-50
rassert/3 3-50
rasserta/2 3-51
rassertz/2 3-51
rclause/3 3-51
rclause/4 3-51
rdefined/1 3-53
read/1 3-9,3-15,3-25,5-9
read/2 3-9, 3-15, 3-25
readc/1 3-12
readc/2 3-12
reading 3-9

ASCII code 3-13
backtracking 3-12
characters 3-12, 3-13
end of file 3-31
files 3-9
lines 3-12
prompt 3-10, 3-25
terms 3-9
terms (from) 3-11
text lines 3-12
variables 3-10

readln/1 3-12
readln/2 3-12

November 1990 xv

Index ProLog by BIM - 3.0 - Reference Manual

real
arithmetic 3-78
datatype 2-3
manipulation 3-33
output format 3-31

real/1 3-72,3-77
realtoatom/2 3-33
recent_mrepeat/2 6-47
reconsult/1 3-66, 8-16
reconsulting files 1-21
record predicates 3-43
record/2 3-55
record/3 3-55
record_pop/2 3-58
recorcLpop/3 3-58
record_push/2 3-59
record_push/3 3-59
recorded/2 3-56
recorded/3 3-56
recorded_arg/3 3-60
recorded_arg/4 3-59
redirection of I/O 3-6
redo (debugger command) 7-22
referenced clause manipulation 3-50
rehash/2 3-54
repeat/0 3-93
rerecord/2 3-56
rerecord/3 3-55
rerecord_arg/3 3-60
rerecord_arg/4 3-60
retract 3-46
retract facts or predicates 3-46
retract/1 3-46, 3-48
retract/2 3-46
retractall/1 3-47
round/1 3-77
rounding 3-77
rretract/1 3-52
rretract/2 3-52
rretract/3 3-52
run (debugger command) 7-16
run-time system 1 -25

convention 1-29

creation 1-29
embedded system 1-31
Organization 1-31

rvassert/4 3-50
rvclause/4 3-52
rvclause/5 3-52

S
save/1 3-95
saved state 3-95
see/1 3-7,3-25
seeing/1 3-7
seen/0 3-7
seeptr/1 3-7
setdebug/0 (directive) 4-4, 7-5
setnodebug/0 (directive) 4-4, 7-5
setof/3 3-89
sh/0 3-97
shell/1 3-97
show (debugger command) 7-25
showleash/0 7-19
showports/1 7-19, 8-18
showsolution 3-31
showspy/0 7-17
showspydefault/0 7-17
sign 3-77
sign/1 3-77
signal handling 3-100
signal/2 3-101
sin/1 3-77
skip (debugger command) 7-22
skip/1 3-14
skip/2 3-14
solution show Option 3-31
sort/2 3-84
sorting 3-84
sound unification 3-82
source file 1-4
source line debugging 7-1,7-23
spaces/1 3-21
spaces/2 3-20

XVI November 1990

ProLog by BIM - 3.0 - Reference Manual Index

sprintf/3 3-20
spy/0 7-17
spy/1 7-17
spy/2 7-18
spy/3 8-18
spydefault/1 7-17, 8-18
spypoints 7-17

checking mode 7-16
setting and removing 7-17

sqrt/1 3-77
srandom/1 3-79
sread/2 3-11
Stacks - simulating 3-55, 3-58
Standard error 3-4, 3-7
Standard input 3-4, 3-7
Standard order comparison 3-83
Standard order of terms 3-83
Standard output 3-4, 3-6
static predicates 1-21,4-4,4-7
static_functor/l 3-74
statistics 3-96
statistics/0 3-96
statistics/3 3-96
status (debugger command) 7-25
stderr 3-4, 3-7
stdin 3-4, 3-7
stdout 3-4, 3-6
step (debugger command) 7-25
stepping debugger 7-15, 7-29

window 8-18
stop at (debugger command) 7-25
stop in (debugger command) 7-25
stop/0 3-95
structures ELI 6-18,6-62
subtraction 3-77
svread/3 3-11
svwrite/3 3-18
switches 3-31,8-9

window 8-9
swrite/2 3-17
syntax

BIM_Prolog 2-4
compatibility 2-8

DEC-10 2-8
rules 2-4

system calls 3-97
system size 1-15
system/1 3-97

T
tab/1 3-21
tab/2 3-21
table 8-10

command line Option 1-9
manipulation 3-70
options 1-5, 3-70
sizes options BIMpcomp 1-20
syntax options 1 -9
window 8-10

table/2 1-7,3-70,8-10
tan/1 3-77
tell/1 3-6,3-25
tell_err/l 3-7
tell_errptr/l 3-8
telling/1 3-6
telling_err/l 3-8
tellptr/1 3-6
term_type/2 3-73
terminating a session 1-4
terms

conversion 3-36
reading 3-9
reading from 3-11
testing 3-72
writing 3-15

testing 3-72
datatypes 3-72
functor 3-74
instantiation 3-72
mode 3-72
predicates 3-54
term 3-72

time predicates 3-98
time/1 3-98

November 1990 XVII

Index ProLog by BIM - 3.0 - Reference Manual

time/2 3-98
told/0 3-6
told_err/0 3-7
toplevel/1 3-102
trace 7-10, 8-19
Trace (debugger command) 7-22
trace mode 7-16
trace/0 7-16, 8-18
true/0 3-91
trunc/1 3-77,3-78
truncation 3-77
types see datatypes 3-33

U
unbutton (debugger command) 7-22
unification 3-81

modules 5-7
univ 3-36
UNIX

files 3-4
Signals 3-100
system calls 3-97

unmenu (debugger command) 7-22
up (debugger command) 7-24
update/1 3-45
user defined options 1 -3
user defined write 3-22

V
var/1 3-72
variablenames 3-61

assert 3-44
clause retrieval 3-49
reading 3-10
writing 3-17

variables
reading 3-10

vassert/2 3-44

vassert/3 3-44
vclause/3 3-49
vclause/4 3-50
version

development see development system
run-time see run-time system

vread/2 3-10
vread/3 3-10
vwrite/2 3-17
vwrite/3 3-17

W
wait/0 3-102
wait/1 3-102
wam_uppercase/0 (directive) 2-8, 4-5
waming 4-5
wamings 3-31,9-1
where (debugger command) 7-22
which_extemal_handler/2 3-101
which_prolog_handler/2 3-101
window 8-9

debugger 8-3,8-20
debugger control 8-17
defaults 8-24
environment 3-31,8-3
files 8-15
master 8-5
monitor 8-3, 8-6
predicates 8-12
tables 8-10

write/1 3-15, 3-22, 5-9
write/2 3-15
writem/1 3-16, 5-7
writem/2 3-16, 5-7
writeq/1 3-16
writeq/2 3-15
writing 3-15, 3-32

% notation 3-19
atom 3-17
characters 3-18
debugger output 7-7

XV111 November 1990

ProLog by BIM - 3.0 - Reference Manual Index

depth 3-32
engine options 1-11
explicit module qualification

3-16, 3-32,5-7
files 3-15
flush 3-32
formats 3-19
into atoms 3-17
lists 3-17
modules 5-7
operators 3-17
pointer position 3-23
quoted 3-15, 3-32
realformat 3-31
specification 3-19
terms 3-15
variablenames 3-17, 3-61

Z
zoomld/2 7-30, 8-19
zoomln/2 7-30, 8-19

November 1990 xix

Index
ProLog by BIM - 3.0 Reference Manual

November 1990

PRINCIPAL COMPONENTS

ProLog by BIM - 3.0 - Principal Components Table of Contents

Principal Components

Contents

1. The Engine.. 1
1.1 Invoking the engine... 3
1.2 Table options.. 5
1.3 Please options.. 10
1.4 Debug options.. 12
1.5 Compiler options.. 13
1.6 Special options... 13
1.7 System size.. 15

2. The Compiler............................ 17
2.1 Invoking the compiler.. 19
2.2 Compiler options.. 20
2.3 Compiler tables.. 20
2.4 Static & dynamic procedures.. 21
2.5 Filename expansion... 22

3. The Linker.. 23
3.1 Introduction.. 25
3.2 Using BIMlinker... 25
3.3 Creating customized development Systems.............................. 28
3.4 Creating run-time Systems.. 29
3.5 Conventions for run-time Systems.. 29
3.6 Embedded Systems... 31
3.7 Examples.. 31

November 1990 i

Table of Contents
ProLog by BIM - 3.0 - Principal Components

ii
November 1990

ProLog by BIM - 3.0 - Principal Components The Engine

ProLog by BIM - Reference Manual
Principal Components
Chapter 1

The Engine

1.1 Invoking the engine.. 3
Starting... 3
Ending.. 4
Consulting files...4

1.2 Table options...5
Table description..5
Table size... 6
Table control.. 6
Parameter setting..8
Global table option...9
Table command line option.. 9

1.3 Please options... 10

1.4 Debug options... 12

November 1990 1-1

The Engine ProLog by BIM - 3.0 - Principal Components

1.5 Compiler options...13

1.6 Special options..13
Initial consult...13
Consulting libraries..14
Saved state.. 14

1.7 System size... 15

1-2 November 1990

ProLog by BIM - 3.0 - Principal Components The Engine - Invoking the engine

1.1 Invoking the
engine

Starting
The ProLog engine is invoked by:

% BIMprolog ccommand line options>

The füll syntax of the command line arguments is (in BNF-like format):

<c o mm and line options>:
(<ProLog options>)* I
(<ProLog options>)* - (<user-defined options>)*

<ProLog options>:
-<categoryxname> I
-<category><namexvalue> I
<file>

<category>:

- the table options (T),
- the please options (P),
- the debug options (D),
- the compiler options (C),
- the special options

<name> :
A füll description of the option names category per category is given
further on.

<value> :
+ (on) I - (off) I <number> I <numberxscale>
When no <value> is specified, the reverse of the previous value is
taken when appropriate.

<scale>:
k (1024) I m (1,048,576) I p (%)

<file> :
The .pro extension for source files is optional. If a file name is given,
for which no .pro-extended file exists, the original name will be
taken as the complete file name. When several files are specified,
they are consulted in the given order.

<user-defined options>:
All options after the delimiter (the sign between blanks) are
considered to be user defined options. They are available to the
application through the argc/1, argv/1, argv/2 predicates.

November 1990 1-3

The Engine - Invoking the engine ProLog by BIM - 3.0 - Principal Components

Ending
A Prolog session is terminated by typing the end-of-file character (AD), or using the
builtin predicates stop/0 or halt/0 .

Help
An overview of the command line options can be interactively obtained by :

% BIMprolog -help

Consulting files
The different kinds of files are :

file. pro ProLog source file

file. wie intermediate code file ; this file is portable between all Sun
architectures.

file.Ms listing file (created whenever errors or warnings occur and
the -CI compiling option is set).

Each of the consulted files may contain any number of queries at any place in the file.
Such queries are executed before the clauses physically following it in the file are
consulted, and the queries may contain requests to consult other files.

A file does not need to be compiled before Consulting. When a source code file is
consulted which is more recent than its corresponding intermediate code file, or if this
intermediate code file does not exist, it is recompiled automatically.

When Consulting the file file.pro, this file is not the current input stream. So queries
which invoke read builtins, never read from the file being consulted.

Options which preceed the filename, and which influence parsing or Compilation, are
automatically passed to the compiler. So the UNIX-command

% BIMprolog -Pc file

compiles, if necessary, the file ’file.pro’ with compatibility syntax (DEC-10) and
continues with the top-level in that mode, while the UNIX-command

% BIMprolog file -Pc

compiles the file in ProLog syntax (default) and continues with the top-level in
compatibility syntax.

1-4 November 1990

ProLog by BIM - 3.0 - Principal Components The Engine - Table options

1.2 Table options

Table description
ProLog uses several tables for storing user programs, user data and system data:

Heap (Hj :

used to store values of variables, to construct and store structured terms, to store
certain Information that is needed during backtracking. Entries that become
obsolete are removed during garbage collection.

Stack (S):

contains backtracking information and the predicate environments.

Code (C), (I) :

contains the intermediate code. The static (Compiled) predicates take more
space than dynamic (Interpreted) ones but the execution will be much faster.

Data (D):

one entry for each atom, real and pointer; entries that become obsolete, are
removed during garbage collection.

Functors (F) :

one entry for each functor that has been used.

Record Keys (R) :

one entry for each tuple (keyl, key2) used in a record predicate; erased keys are
removed on garbage collection.

Backup Heap (B):

contains structured terms that are recorded; terms associated with erased keys
are removed during garbage collection.

Temporary and Permanent Strings (Sp), (St) :

contains temporary and permanent strings essentially used in predicate names
and external language manipulation.

System Tables :

these tables are totally hidden to the user.

November 1990 1-5

The Engine - Table options ProLog by BIM - 3.0 - Principal Components

Table size

Table control

The tables used by the engine can be divided into three classes :

• Tables that are only slightly affected by the application.

• Tables whose size is influenced by the complexity of the executed goal.

• Tables whose size depends on the size of the program.

These differences are reflected in the way the size of the tables are determined.

Tables whose size is independent of the-user’s applications are kept invisible to the user,
and have a size that is determined by the system. Some of these tables expand or shrink
automatically, following the resource requirements of the executing system. This all
happens transparently for the user, unless expansion becomes impossible due to a lack
of available (virtual) memory, in which case, an overflow occurs.

Tables that are largely influenced by the execution, have an automatic expansion
capability. They will expand to follow the needs of the executing goal. Since they are
dependent on the user’s program, the user has the possibility to determine the size and
the expansion behavior of these tables.

Tables whose size depends on the program, but less on the execution, are currently not
expandable. Here too, the user can determine the size of the table. In the future, these
tables may also be made auto-expandable.

All tables that are controllable by the user, are characterised by a minimum size (m),
which is fixed by the system, and four parameters that can be set by the user or by its
application.

b (base).....................Base size of the table, before any expansion

t (threshold)..............Threshold for deciding about table expansion

e (expansion).....Amount used for a single expansion

I (limit).....................Hard upper limit, no expansion beyond this size

1-6 November 1990

ProLog by BIM - 3.0 - Principal Components The Engine - Table options

The following table reflects the default settings for the different visible tables :

jO
3G
N

G
O

<o

<ouGx
g

O

G X) <0
.N

G co
. 2
1 "t—*

G T 3 2
O
00

N
•
00

o
<0 c3 g

CO
• ü

*00
co
CO
G

o
X §i' 1 i<

' o &i ’g GO
CO p .

X
, g

O w 00 PQ W 2

Table Name m b t e 1

Heap (H) Yes Yes Yes 4k 32k 25% 100% lm
Stack (S) Yes No Yes 4k 32k 25% 100% lm
Data (D) Yes Yes No 2k 4k ~ - lm
Functor (F) Yes No No lk 2k - - lm
Interpreted Code (I) Yes Yes No 4k lók - - lm
Compiled Code (C) Yes No No 4k lók ~ " lm
Record Keys (R) Yes Yes No Ik 2k - - lm
Backup Heap (B) Yes Yes No lk 8k - - lm
Permanent String (Sp) No No Yes - - - - -

Temporary String (St) No Yes Yes - - - - -

These parameters can be set either when invoking the engine by using the command line
table option -T, or when the system is running, using the table/2 buil tin. The following
constraints apply:

• The base b cannot be set to a value smaller than the minimum size (and will
be set to m when trying so).

• The limit 1 must be bigger than the minimum size m.

• When changing parameters when the system is up, the b parameter cannot be
made bigger than the actual table size, while the 1 cannot be made smaller
than that size.

When starting up the system, each table is created with b as its size. Whenever the table
becomes füll, the garbage collector is activated, if there is one for that table. After
garbage collection, or immediately in case there is no garbage collector, the size of the
free part of the table is compared with the threshold t. If there is less free space than t,
the table is expanded with an amount, determined by the expansion parameter e, uniess
this would make the table bigger than the limit size 1. In that case, a fatal overflow
occurs. A non-expandable table will immediately cause a fatal overflow if the free part
becomes smaller than the threshold t, after garbage collection.

November 1990 1-7

The Engine - Table options ProLog by BIM - 3.0 - Principal Components

Parameter setting
Parameter values can either be absolute, i.e. expressed in number of table entries, or
relative, i.e. expressed as a percentage.

The meaning of a relative value depends on the parameter, and is given in the table
below :

Parameter Meaning of relative value

b (base) None (not allowed)

t (threshold) Percentage of the actual table size

e (expansion) Percentage of the actual table size

1 (limit) Percentage of the base table size (b)

A parameter setting is given as an atom, composed of the identification letter for the
parameter and a value (with no space in between). The value is either a simple integer
number, or an integer number followed immediately by a scale factor, which is a single
character.

The following rule describes this :

<ParamSetting>
<ParamValue>
<ParamId>
<Scale>

= > <ParamIdxParamValue>
= > <Integer> I <IntegerxScale>
==> b I t I e I 1
==> k I m I p I %

The meaning of the scale factors is :

k kilo..........1024

mmega...............1,048,576 (= 1024*1024)

p or %........ percentage

November 1990

ProLog by BIM - 3.0 - Principal Components The Engine - Table options

Global table option

Table command line
option

Help

Name Value Description

warn or w +/- Enable or disable messages when doing
garbage collection or table expansion

This global table option can be set in the BIMprolog command line or by using the
builtin table/2.

The table command line option is -T, and is used as follows :

% BIMprolog <TableOption>

<TableOption> = > -T<OptionIdxOptionValue> I
-T<TableIdxTableCommand> I
-T <T ableIdxParamSettingList>

<OptionId> ==>

<OptionValue> ==>

<ParamSettingList> ==>

w I warn

+ 1 -

<ParamSetting> I
<ParamSetting>,<ParamSettingList>

These options should be placed before any file names on the command line, although
they may occur any where. Placing them at the beginning ensures they will be honoured
completely. As soon as a file has to be consulted during startup of the system, it has to
allocate the tables and thus changes to an ’up’ state. As a result, the run-time constraints
on setting table parameters become active. The major consequence of this is that the
base table size (b) cannot be changed anymore.

An overview of the table options can be interactively obtained by :

% BIMprolog -Th

November 1990 1-9

The Engine - Please options ProLog by BIM - 3.0 - Principal Components

13 Please options
The please options can be used to toggle certain switches in the ProLog engine and they
may be mixed with the files to be consulted, in this case and if it is meaningful, the
option is passed to the compiler :

-Pae indicates if the \ escape character is active or not.
default: - (not active).

-Pc work in DEC-system 10 compatibility mode,
default i - (native ProLog syntax).

-Pd starts the interactive session producing debug code.
default: - (non debug code).

»Pc Translates the in Jane evaluation.
default: + (on).

-Ped starts ProLog with its window-oriented debugger environment,
default: - (no debugger environment active).

-Pein starts ProLog with its window-oriented programming environment
monitor.
default: - (no programming environment active).

-Pfratom The atom given with option fr specifies the format with which a real
is printed out. It can be any format that may be used in a formatted
print. See also printf/2-3.
default: ’%.15e\

-Pq starts the interactive session with querymode on (this means that the
ProLog engine will prompt with a such that a query can be
entered without having to type the ’?-’); the next occurrence of this
option cancels the previous.
default: - (querymode off).

-Praatom The end-of-file atom is set to the atom atom.
default: ’end_of_file\

-Preval The end-of-file character is set to the integer val.
default: -1 .

-Prf switches the behavior when an end-of-file character is encountered.
default: + (fail upon reading EOF).

1-10 November 1990

ProLog by BIM - 3.0 - Principal Components The Engine - Please options

-Ps starts the interactive session with showsolution turned on. In this
mode whenever a query is solved, the value of the variables in the
query are printed out. If other Solutions exist typing a will
indicate that they are required, a <CR> means termination of the
goal evaluation.
default: - (show_solution off).

-Pw switches the general warning flag on and off (suppress all
warnings).
default: + (give warnings).

-Pwddepth the term is only considered up to a depth of depth, when printing out
a structured term; All subterms of that level are printed as
giving 0 as depth results in ’...’ for the complete term; a negative
number is read as infinity.
default: -1 (infinity).

-Pwf Determines whether output operations have to be followed by a
flush.
default: + (on).

-Pwm provides explicit module qualification when printing terms,
default: - (no module qualification).

-Pwp usage of prefix functor form in output.
default: - (no prefix functor form).

-Pwq usage of quotes in output.
default: - (no quotes).

For more details on the please switches, see the builtin predicate please/2.

Help

An overview of the please options can be interactively obtained by :

% BIMprolog -Ph

November 1990 1-11

The Engine - Debug options ProLog by BIM - 3.0 - Principal Components

1.4 Debug options

Help

-Dp indicates whether a command must be requested after activation of
the debugger or a (re)consult.
default: + (prompt is requested).

-De control of choice point destruction under debugger execution (see
also debug/2 builtin).
default: - (only marking of choice points).

-Dtr switches recording of trace on or off.
default: + (on).

-Dwm prints explicit module qualification in debugger output,
default: - (no module qualification).

-Dwq prints necessarry quotes in debugger output,
default: - (no quotes).

-Dwp provides prefix operators in debugger output,
default: - (no prefix).

-Dtd defines the allowed depth of the recorded trace.
default: -1 (infinity).

-Dwd nesting depth for structured terms in debugger output,
default: -1 (infinity).

An overview of the debug options can be interactively obtained by :

% BIMprolog -Dh

More details about debug options can be found in the Part on the Debugger.

1-12 November 1990

ProLog by BIM - 3.0 - Principal Components The Engine - Compiler options

1.5 Compiler options
Compiler options, can be specified in the BIMprolog command line. They have to be
preceeded by ’-C’ and must be specified one at a time.

For example:

% BIMprolog -Cw -Cd filename

An overview of the compiler options can be interactively obtained by:

% BIMprolog -Ch

A füll description of the compiler options is given in chapter 1.2 .

1.6 Special options

Initial consult
The ProLog system, upon initialization, silently consults the file .pro if it exists in the
current directory or in the user’s home directory. This .pro file can be used to set
preferred default options.

For example:

% BIMprolog -Pem -Ps+ -Pq+

can be obtained by putting the following queries in the .pro file :

% cat.pro
?- please (em,on).
?- please (s,on).
?- please (q,on).

The following option must follow the table size options immediately and must come
before any file to be consulted :

-f[startfile] do not consult the .pro file (in the home directory) as user
initialization, but instead, take startfile as startup file.
If no argument is given with this option, no initial consult will be
performed.

November 1990 1-13

The Engine - Special options ProLog by BIM - 3.0 - Principal Components

Consulting libraries
Consulting ProLog library files :

-Llibfile consult the file libfile which is first found in the possible
library directories. Library directories are searched in the
following order:
1. All directories given in the library path environment
variable ($BIM_PROLOGJLIB), in the same order as given in
that variable.
2. The system library directory ($BIM_PROLOG_DIR/lib/).
3. The working directory.

-YLfile consult the specified file from the ProLog home directory
($BIM_PROLOG_DIR).

Saved state
-ifile Restores the ProLog session by using the saved state file, file.

See also the builtin save/1 .

1-14 November 1990

ProLog by BIM - 3.0 - Principal Components The Engine - System size

1.7 System size

The following table gives for each table the number of bytes used per entry:

Table
H
S
D
F
I
C
R
B

The size of the kernei is:

sun4 700k
sun3 640k
sun386 700k

With these figures, the total core needed by a ProLog session can be calculated.

Number of bytes per entry
5
5
11
14
8
36 (sun3) / 44 (sun4) / 48 (sun386i)
16
5

For example :

The core needed to start up the engine with default options on a sun4 is:

160 kilo bytes
160 kilo bytes
44 kilo bytes
28 kilo bytes

128 kilo bytes
704 kilo bytes

32 kilo bytes
40 kilo bytes

700 kilo bytes

(32k H)
(32k S)
(4k D)
(2k F)
(lók I)
(lók C)
(2k R)
(8k B)
(kernei sun4)

1,996 kilo bytes

November 1990 1-15

ProLog by BIM - 3.0 - Principal Components
Engine - System size

November 1990

ProLog by BIM - 3.0 - Principal Components The Compiler

ProLog by BIM - Reference Manual
Principal Components
Chapter 2

The Compiler

2.1 Invoking the compiler... 19

2.2 Compiler options...20

2.3 Compiler tables...20

2.4 Static & dynamic procedures... 21

2.5 Filename expansion... 22

November 1990 1-17

Compiler
ProLog by BIM - 3.0 - Principal Components

November 1990

ProLog by BIM - 3.0 - Principal Components The Compiler - Invoking the compiler

2.1 Invoking the
compiler

The ProLog compiler translates ProLog source code into a form more suitable for ex
ecution. One can easily manage without calling it explicitly, since the ProLog system
will invoke it when Consulting a source file which is more recent than its translated
form. Ho we ver, sometimes it is useful to use it to check the syntax of source files, or to
speed up the consult when actually running the program.

Compiling all sources before starting the engine makes more swap space available for
the engine. Otherwise, enough swap space must be available for both the compiler and
the engine to run simultaneously.

The compiler is called by :

% BIMpcomp [-acdehlpwxA] filelf.pro] [file2[.pro]...]

The ProLog compiler converts a Prolog source file into a ProLog object file containing
intermediate code. The object file produced has the same name as the source file but
with an extension .wie, file.wic. If the Compilation was not successful, the errors (syn-
tactic or semantic) and warnings are printed on Standard error. A listing file (whose
name is the filename extended with .lis) can be generated by setting the -1 option in the
compilation command.

Also, BIMpcomp displays (on stderr) a message notifying the unsuccessful completion
of the compilation. (More details about the messages of BIMpcomp can be found in Ap
pendix).

November 1990 1-19

The Compiler - Compiler options ProLog by BIM - 3.0 - Principal Components

2.2 Compiler options
The options that are interpreted by BIMpcomp are the following :

-a compiles as if the source file contained a alldynamic’ directive.
default: inactive.

-c terms are parsed according to the DEC-10 Prolog syntax. Definite
clause grammar rules are only translated with this option.
default: inactive.

-d compiles the complete file to debugger code. This has the same
effect as putting a setdebug’ directive in the beginning of the file
(without any following setnodebug’ directives).
default: inactive.

-e translates the in-line evaluation.
default: translation is done.

-h help option.

-1 error messages and warnings are redirected into a listing file whose
name is the source filename extended with Ms .
default: error messages are written to stderr.

-p includes operator declarations in the object file.
The effect is the same as if one calls the corresponding operator
predicates interactively.
(see also the builtin predicate eonsult/1).
default: operator predicates are not active interactively.

-w Controls all warnings.
default: warnings are shown.

-x activates the \ escape character.
default: inactive.

-An if n is a positive integer, the sizes of the internal tables of the
compiler are multiplied by n to be able to compile larger programs.
Otherwise, when n is a negative integer, the sizes of the intemal
tables are divided by -n, such that the compiler consumes less core.

2.3 Compiler tables
If during compilation, the default size of the compiler tables is not big enough, the
system increases them automatically. Nevertheless, the user has the possibility to
manually increase the compiler tables with the -An compiler option. This helps speed
up compilation time for huge files.

1-20 November 1990

ProLog by BIM - 3.0 - Principal Components The Compiler - Static & dynamic procedures

2.4 Static & dynamic
procedures

The compiler distinguishes between two kinds of procedures : dynamic and static. By
default all procedures are static, and to make a procedure dynamic, an explicit
declaration is needed.

For example

dynamic foo/3.

To make all procedures in a file dynamic :

alldynamic.

The difference between static and dynamic procedures is that once loaded - by
Consulting a file - the static procedure cannot be modified by consult, assert or retract.
Attempts to do so, will result in error messages and/or warnings. Note that reconsult can
replace a static procedure with an alternative definition.
Dynamic procedures can be modified at run time, while static procedures are executed
more efficiently since they are compiled into native code.

Mode declarations and indexing can be specified in order to improve static and dynamic
predicates.
Additional hashing is available for dynamic predicates (see Builtin Predicates Chapter
2 - In-core DB manipulation - Optimization, and Directives - Chapter 1- Optimization).

Note that the choice between static and dynamic predicates does not affect the ProLog
debugger. The use of the debugger option allows to (re)consult, assert or retract both
kinds of procedures.

November 1990 1-21

The Compiler - Filename expansion ProLog by BIM - 3.0 - Principal Components

2 .5 Filename
expansion

Wherever a file name is expected, the file can be given either with its füll path or with
a relative path. In addition, a number of meta symbols can be used to include some
environment dependent parts in the file name. These are expanded automatically by
ProLog.

Places where this expansion takes place are :

BIMpcomp and BIMprolog arguments
include/1
consult/1
fopen/3, tell/1, see/1
extern_load/2, extern_load/3

There is also a builtin expand_path/2 for explicitly doing this expansion.

The following meta symbols are recognized. They can only be used at the beginning of
the filename.

Svmbol expansion

~ Home directory of the user ($HOME).

-user Home directory of ’user’.

$VAR Value of VAR in environment.

-L The first library directory in which the given filename is found.
Library directories are searched in the following order:
1. All directories given in the library path environment
variable ($BIM_PROLOG_LIB). In the same order as given in
that variable.
2. The system library directory ($BIM_PROLOG_DIR/lib/).
3. The working directory.

-Hfile Consult file from the ProLog home directory
($BIM_PROLOG_DIR).

1-22 November 1990

ProLog by BIM - 3.0 - Principal Components The Linker

ProLog by BIM - Reference Manual
Principal Components
Chapter 3

The Linker

3.1 Introduction... 25

3.2 Using BIMlinker... 25
Options... 26
Environment variables... 26
Symbol tables... 27
Error description file.. 27
Main file... 27
Filenames and expansion... 27

3.3 Creating customized development Systems....................... 28

3.4 Creating run-time systems.. 29

3.5 Conventions for run-time systems..29
Toplevel condition... 30
Program file organization.. 30

November 1990 1-23

The Linker ProLog by BIM - 3.0 - Principal Components

Run-time system organization.. 31

3.6 Embedded systems... 31

3.7 Examples.. 31
Minimal example.. 32
Small example with external predicate.. 32
Example using XView.. 34
Embedded system... 36

1-24 November 1990

ProLog by BIM - 3.0 - Principal Components The Linker - Introduction

3.1 Introduction
The ProLog linker (BIMlinker) can be used to create customized versions of ProLog.
There are two possible levels that can be created : a customized development system,
or a run-time system.

With a development version, the user of the created system still has access to the füll
ProLog development environment. This environment can be adapted with other defaults
and extended with some specific programs and data as decided by the generator of the
customized system.

A run-time version is meant to be an end-user product in which it is not visible what the
underlying engine is. Therefore, it does not include the ProLog development environ
ment. It includes the whole application of the run-time generator, and can only be used
to run that specific application.

3.2 Using BIMlinker
The ProLog system can be linked with a number of external compiled object modules
and libraries into a single executable. A set of compiled ProLog files can also be linked
into the new system. It can be tuned for alternative default options.

A generic form of a BIMlinker call is :

BIMlinker [link options] * - [targets] *

The linker options link_options must be given as first arguments. They are separated by
a single sign from the other arguments that are meant to be ProLog options and target
Prolog file names. The linker options include both options for BIMlinker and for the
UNIX linker ld. All options that are not recognized by BIMlinker are passed to ld.

The targets can be any Prolog files and ProLog options. For files that are mentioned as
targets, only the .wie files are opened. It is not verified whether they are more recent than
the corresponding Prolog source file or even if this exists. Options can be given to set the
new default values in the generated system. All indicated Prolog files will be part of the
initial environment of the new system. If they contain external load declarations, these
are executed by BIMlinker. All necessary external code will be linked in the created sys
tem. Prolog code will be loaded automatically each time the system is started up. For a
run-time system, this code is restored from a data file that is generated by BIMlinker.
As a result, the given files are no longer needed after generation of the run-time system.
In a development system, the code is (silently) loaded from the compiled Prolog files.
Which means that these files cannot be removed. (See further for important notes on file
naming.)

To use BIMlinker, the environment variable BIM_PROLOG_DIR must be defined and
indicate the home directory for ProLog.

The generated executable file, and for run-time systems also the data file, are left in the
working directory. It is the user’s responsibility to move these files to the right location.

November 1990 1-25

The Linker - Using BIMlinker ProLog by BIM - 3.0 - Principal Components

Options

BIMlinker options are used to specify the environment of the generated system and to
control how it is to be generated.

-o exec_file

-r dataj'ile

-e error_file

-m mainj'ile

-h home var

-1 libs var

-x

-g

-q

Names the executable output file as execjile .
Default: -Hbin/BIMprolog

A run-time system is generated with data file datajile.
Default: no run-time generation.

Error descriptions are taken from error Jile.
Default: $BIMJPROLOG_DIR/install/errors.o

The file containing the main() routine, is main_fiie.
Default: $BIM_PROLOG_DIR/install/main.o

The environment variable home var will be used to find the
new system’s home directory.
Default: BIM_PROLOG_DIR

The environment variable libs var will be used to find the li
brary directory paths.
Default: BIM_PROLOG_LIB

Enable incremental linking in the resulting system.
Default: incremental linking is disabled by Stripping the Sym
bol table, saving space in the executable file.

Retain the complete symbol table, to enable symbolic debug
ging of linked procedures.
Default: non-external symbols are stripped from the symbol
table, even with -x.

Link quietly.
Default: diagnostics are reported during linking.

Environment variables

ProLog uses two environment variables, one to determine its home directory, and one as
a library directory path. The home directory is used to find system files, and in expanding
-H in file names (see below for file name expansion). The other variable is supposed to
contain a list of directory paths, separated with These directories are searched for li
brary files when expanding -L in file names. The names of these variables can be deter
mined when creating a new system with the linker. This is particularly useful when a run-
time system is generated : the application has no relation anymore with ProLog, and
therefore may not reference its home directory anymore.

1-26 November 1990

ProLog by BIM - 3.0 - Principal Components The Linker - Using BIMlinker

Symbol tables

Error description file

Main file

Filenames and expansion

Using BIMlinker, one can control the contents of the symbol table of the generated ex
ecutable. By default, it is completely stripped. This saves space in the executable file.
Ho wever, as aresult, the generated system cannot be used to link incrementally addition
al external programs. To enable this incremental linking, a part of the symbol table must
be retained in the created executable. The -x option indicates this. For debugging, this
does not suffice; the whole symbol table, including debugger Information, must be re
tained. This can be indicated with the -g option. A system that is generated (and com
piled) with -g, can be debugged with symbolic debuggers like dbx.

A system that does not have to be able to link incrementally, will also be linked to use
shared libraries instead of static libraries. This potentially saves a lot of space in the ex
ecutable file. To force usage of static libraries, the ld linker option -Bstatic must be added
to the linker option list.

An error description file must be a compiled file in UNIX object file format. It is gener
ated from a Prolog source file in two steps. First a C source file is generated with the pro
gram BIMerrgen. If the error description file is called errors.pro, then

BIMerrgen errors

generates a C file errors.c that has to be compiled with

cc -c errors.c

creating the object file errors.o.

A specification of the contents of an error description file can be found in General Built-
ins - Error Handling.

A main file is a file that contains the routine main() that is called as the toplevel routine
in the generated system. The default main file makes ProLog become the master of the
process. By creating your own main file, it is possible to make the external program mas
ter of the process. The main file must be compiled prior to calling BIMlinker. (See sec-
tion Embedded systems on how to make the external program master).

The file names in the linker options and the target file names, can be given in several
ways, resulting in the files being placed in different directories. It is important to choose
the right way, as the files will be searched for automatically in these places, on each in-
vocation of the new system.

A file location can be absolute, relative or environment dependent.

November 1990 1-27

The Linker - Creating customized development systems ProLog by BIM - 3.0 - Principal Components

absolute location
Path starting with this absolute path name.
Path not starting with V: this path, extended to an absolute path .

relative location
Path starting with V : the given relative path, from the working directory
in which the system is started up.

environment dependent location
Path starting with ’-H’: relative from the application’s home directory.
Path starting with ’-L’: relative from one of the library directories.

An absolute location should be used if the files are always on the same location.

A relative location is useful when the files are always on a fixed relative distance from
the directory in which the system is started up.

The most flexible way is the environment dependent location, especially for system re
lated files. The whole system can be moved to any directory : by setting the system’s
home directory environment variable, the System files will be found at the new place.

Environment dependent file names are expanded as follows.

-Hpath
Expanded to $APPL_HOME/path, with APPL HOME the variable that in-
dicates the application’s home directory, as set with the linker option -h.

-Lpath
Expanded to DIR/path, with DIR the first directory from the following list,
in which the given file can be found.

• Directories in $APPL_LIBS, with APPL LIBS the variable that indicates
the application’s library directory path, as set with the linker option -1.

• Application home library $APPL_HOME/lib.

• ProLog home directory $BIM_PROLOG_DIR/lib.

• Working directory.

3.3 Creating custom
ized development sys

tems
A customized development system is created with BIMlinker, using the default mode
(contrary to generating a run-time system by using the linker option -r). Typically, the
call of BIMlinker has the form :

BIMlinker -x -o execjile - options targets

The -x linker option is necessary to enable incremental linking in the created system. The
new system is named execjile , as indicated with linker option -o. It will have default op-

1-28 November 1990

ProLog by BIM - 3.0 - Principal Components The Linker - Creating run-time systems

tions as given in options and when it is started up, the Prolog files targets are silently con
sulted.

A special case is where the error descriptions must be replaced :

BIMlinker -x -o execjile -e error_file - options targets

Here the -e linker option indicates that the error descriptions are in the (compiled) file
errorJile.

3.4 Creating run-time
systems

With BIMlinker, it is possible to generate a stand-alone run-time version of any ProLog
application. Such a system can be delivered to an end-user as a package of two files : an
executable and a data file. Depending on the application, additional data or program files
can accompany the package.

To turn an application into a run-time system, a few simple conventions must be respect-
ed (See section Conventions for run-time systems).

Before generating a run-time system with BIMlinker, all external files and Prolog files
must be compiled. It is a good idea to maintain a ma kefi le to do this. This can also contain
the command to generate the run-time system.

The command below is a typical call of BIMlinker to generate a run-time system.

BIMlinker -o ApplRun -r ApplData -h ApplHome -1 ApplLibs - options targets

The executable file is named ApplRun and the data file ApplData. The environment vari
able that will indicate the application’s home directory is called ApplHome, and the one
for the library directories ApplLibs. The options are used as default ProLog options in
the run-time system and the targets are linked into the system. External code in these tar
gets is linked into the executable file, and Prolog code is stored in the data file.

Here also, the -e linker option can be used to replace the Standard error descriptions.

Both files, ApplRun and ApplData are generated in the working directory.

3.5 Conventions for
run-time systems

Some conditions must be met in order to create a run-time system. The first one concerns
the toplevel of the engine. The others refer to the program file organization.

November 1990 1-29

The Linker - Conventions for run-time systems ProLog by BIM - 3.0 - Principal Components

Toplevel condition

A run-time system has no Prolog engine toplevel. The execution of such a system only
consists of the execution of a special predicate : main/0. As soon as main/0 terminates,
the execution of the run-time system stops.

As a result, the application that is turned into a run-time system, must have a definition
for the (global) predicate main/0, which starts up the application.

Program file Organization

To clarify the discussion about program Organization, it is necessary to identify the two
different phases in Consulting Prolog files and linking external objects files. The follow
ing terminology is used :

creation time
Indicates the moment when the run-time system is created. This is at the ap
plication developer’s site.

execution time
This is during execution of the application, which is at the customer’s site.

The rules that determine when Prolog code is consulted or when external code is linked
are:

• All Prolog files that are given as targets to the ProLog linker, are consulted at
creation time.

• The Prolog files that are consulted at creation time, are saved into the run-time
system. They are not needed at execution time.

• The object files and libraries that are linked at creation time (i.e. if they appear
in external load directives in files that are given as targets to BIMlinker), are
saved into the run-time system. They are not needed at execution time.

• The Prolog files that are consulted at execution time, must be delivered to the
user in a compiled form (.wie).

• The object files and libraries that are incrementally linked at execution time (i.e.
if they appear in external load directives of files that are not given as targets to
BIMlinker), must be delivered to the user in a compiled form (.o).

• The object files that are incrementally linked at creation time, are not saved in
the run-time system and they are not linked at execution time. This should be
avoided. This includes the external load directives in files that are consulted
from one of the target Prolog files, during creation time.

• Queries in files that are consulted at creation time, are executed at creation time.
If they contain consults, these are also done at creation time. •

• Queries in files that are consulted at execution time, are ignored.

1-30 November 1990

ProLog by BIM - 3.0 - Principal Components The Linker - Embedded systems

Run-time system
organization

No query is needed to start the run-time application. At execution time, the global pred
icate main/0 is automatically called.

The run-time system consists of at least two files, that usually reside in the same directo
ry. It is possible to parameterize the location of that directory in such a way that the cus-
tomer can decide where he will put the whole system. This is accomplished through the
use of an environment variable that contains the path of the application’s home directory.
The creator of the run-time system decides on the name of that variable.

The application home directory is referred to from the Prolog code, with the -H filename
expansion (in consults). This has exactly the same behavior as in the ProLog develop
ment system, where the home directory variable is named BIM_PROLOG_DIR.

As a run-time system does not include a compiler, all additional files must be compiled
prior to delivering it to the customer. Only the .wie files must be included.

3.6 Embedded systems
An embedded system is a run-time system in which not ProLog , but the external pro
gram is the master. The main() routine must be defined in the external program, and the
object file name that contains this routine, must be given to BIMlinker with the -m linker
option.

In order to enable ProLog to initialize, the main() routine must call the external ProLog
routine

BXMProloginitialize (pargc , argv)
int * pargc;
char * argv [];

This routine expects the command line arguments that are passed to the generated sys
tem. The number of command line arguments (arge) must be passed by reference. The
initialization routine will strip off the command line arguments that it can use.

Calling BIM_Prolog_initialize() should happen before doing anything else in the exter
nal program (even before printing any messages).

3.7 Examples
Four examples are given : the first one is somewhat the minimal application that could
be made. The second one uses an external predicate. Example three uses several external
packages (using the XView and Xlib interface). The last one demonstrates an embedded
system.

November 1990 1-31

The Linker - Examples ProLog by BIM - 3.0 - Principal Components

Minimal example

The source program consists of the file Appll.pro. This file contains a definition for
main/0:

mam :-
write(’Hello from the Run-Time System.Xn’).

The following commands are issued to generate the run-time system :

% BIMpcomp Appll
% BIMlinker -h APPLl_HOME -r -HAppllData -o -HAppllRun - -TCbO Appll

The output of this BIMlinker call is something like :

Warning : Environment variable APPLl_HOME is undefined.
Using system’s home directory instead.
Linking target file Appll.wie
Final linking into Appll Run
Initializing data for Appll Run
Warning : Cannot expand -HAppllData : unknown system home directory.
Warning : Cannot expand -HAppllRun : unknown system home directory,
compiled /usr/local/Bprolog/demos/runtime/Appll/src/Appll .pro
consulted Appll.pro
Creating initialized data file Appll Data.

As we did not define the application home directory variable APPLl_HOME, the linker
gives a warning. For this application, this variable is not used and therefore we can ignore
the warnings.

Then the application can be moved to its destination home directory. Suppose we will
place it in -/Appll:

% mv Appll Run Appll Data -/Appll

If there is a BIMCODE file with a legal code in that directory, we can start the applica
tion:

% setenv APPLl_HOME -/Appll
% $APPL1 _HOME/Appl 1 Run

This will produce the message:

Hello from the Run-Time System.

Small example with
external predicate

For this application, the program consists of two source files : Appl2.pro and Appl2.c.
The Prolog file contains the following declarations and definitions:

1-32 November 1990

ProLog by BIM - 3.0 - Principal Components The Linker - Examples

extern_load ([date_time] , [’Appl2.o’ , ’-lc’]) .
extern_predicate (date_time (string : r)) .

go
date_time (_date_time),
write (’Hello from the Run-Time System.Nn’),
printf (’On this system, it is now %s\n’ , _date_time),
write (’Bye.Xn’) .

main
go.

The C file has a definition for date_time() :

#include <time.h>

char *date_time()
{

long t;

t = time(0);
return(ctime(&t));

The run-time system is generated with the following commands:

% cc -w -c Appl2.c
% BIMpcomp Appl2
% BIMlinker -h APPL2_HOME -r -HAppl2Data -o -HAppl2Run - -TCbO Appl2

The output of this BIMlinker call is similar to:

Warning : Environment variable APPL2_HOME is undefined.
Using system’s home directory instead.
Linking target file Appl2.wic
Final linking into Appl2Run
Initializing data for Appl2Run
Waming : Cannot expand -HAppl2Data : unknown system home directory.
Warning : Cannot expand -HAppl2Run : unknown system home directory,
compiled /usr/local/Bprolog/demos/runtime/Appl2/src/Appl2.pro
consulted Appl2.pro
Creating initialized data file Appl2Data.

As we did not define the application home directory variable APPL2_HOME, the linker
gives a warning. For this application, this variable is not used and therefore we can ignore
the warnings.

Then the application can be moved to its destination home directory. We will place it in
~/Appl2 :

% mv Appl2Run Appl2Data ~/Appl2

November 1990 1-33

The Linker - Examples ProLog by BIM - 3.0 - Principal Components I

If there is a BIMCODE file with a legal code in that directory, we can start the applica
tion:

% $APPL2_HOME/Appl2Run

This will say something like:

Hello from the Run-Time System.
On this system, it is now Thu Sep 20 10:27:31 1990
Bye.

Example using XView

This application is a combination of Prolog code, external C code and libraries. It also
illustrates the usage of Prolog libraries at execution time (when the run-time system is
executed). It is made of the Prolog files hanoi.pro, fixintro.pro, var intro.pro, main.pro
and the C file banner.c, which includes a bitmap defined in the file banner.pr. The ha
noi.pro file is mainly the hanoi demonstration program. The Prolog file main.pro con
tains the declarations for the external predicate banner/3 and also for the top-level pred
icate main/0. Note that this one is outside the hanoi module, to keep it global. Also note
that there is a query to load the file hanoi.pro during creation of the system. The main/0
predicate calls an introduction predicate that first executes the fixed introduction and the
consults the varintro.pro file from the application library (using -L). Each of these intro
files write a message. As main/0 is only executed when the run-time system is executed
(not when it is created), the varintro is just as well only consulted and executed during
execution of the generated system. The fixintro on the other hand, is given as target to the
linker, and therefore it is linked into the generated run-time system. So it does not have
to be consulted anymore at execution time. But it is also executed from the main/0 pred
icate and therefore not executed at creation time. The query to consult hanoi.pro, in the
file main.pro is executed at creation time because main.pro is a target of BIMlinker and
so, hanoi.pro, is linked into the generated system.

The contents of main.pro :

:- import go/0 from hanoi.

main :-
intro,
go$hanoi.

intro :-
fixintro,
consult (’-Lvarintro’) .

:- module (hanoi) .
:- externjoad ([banner] , [’banner.o’]) .
:- extern_predicate (banner (pointer : r , integer : o , integer : o)) .

?- consult (hanoi) .

The C file banner.c defines the banner() routine:

1-34 November 1990

ProLog by BIM - 3.0 - Principal Components The Linker - Examples

#include <xview/xview.h>
#include <xview/svrimage.h>

#define bannerjwidth 672
#define banner_height 352
#define banner_depth 1
static short banner_bits[] = {
#include "banner.pr"

Server_image banner (width , height)
int * width, * height;
{

retum(xv_create (XV_NULL , SERVERJMAGE ,
XV_WIDTH, banner_width ,
XV_HEIGHT, banner_height,
SERVER_IMAGE_DEPTH, banner_depth ,
SERVER_IMAGE_BITS , banner_bhs ,
0));

} /* banner */

The following commands create the run-time system:

% cc -c banner.c
% BIMpcomp hanoi main fixintro varintro
% BIMlinker -Bstatic -h APPL3JHOME -r -HAppl3Data -o -HAppl3Run - \

-TDb8k -TFb4k main -Lxview -Lxlib fixintro

The output of this BIMlinker call is similar to:

Warning : Environment variable APPL3_HOME is undefined.
Using system’s home directory instead.
Linking target file main.wic
Linking target file /usr/local/Bprolog/lib/xview.wic
Linking target file /usr/local/Bprolog/lib/xlib.wic
Linking target file fixintro.wic
Final linking into Appl3Run
Initializing data for Appl3Run
Warning : Cannot expand -HAppl3Data : unknown system home directory.
Warning : Cannot expand -HAppl3Run : unknown system home directory.
compiled /usr/local/Bprolog/demos/runtime/Appl3/src/main.pro
consulted main.pro
executing query
compiled hanoi.pro
consulted hanoi.pro
compiled -w /usr/local/Bprolog/lib/xview.pro
consulted xview.pro
executing query
compiled -w /usr/local/Bprolog/lib/xlib.pro
consulted xlib.pro

November 1990 1-35

The Linker - Examples ProLog by BIM - 3.0 - Principal Components

compiled /usr/local/Bprolog/demos/runtime/Appl3/src/fixintro.pro
consulted fixintro.pro
Creating initialized data file Appl3Data.

The application can now be moved to its destination home directory (e.g. ~/Appl3):

% mv Appl3Run Appl3Data ~/Appl3
% mv varintro.wic ~/Appl3/lib

If there is a BIMCODE file with a legal code in that directory, the application is started:

% setenv APPL3_HOME ~/Appl3
% $APPL3_HOME/Appl3Run

This will give the following output and start the hanoi demo with a banner on its canvas
window.

Fixed intro to hanoi.
compiled /home/demo/Appl3/lib/varintro.pro
consulted varintro.pro
executing query
Variable intro to hanoi.

Embedded system

As a an example of an embedded system, the following program starts in C by printing
a message, then calls a Prolog predicate that prints a message from Prolog, and then
prints a final message from C. It consists of a Prolog file and a C file. The Prolog file
contains the following definition :

hello write (’Hello from ProLog !\n’) .

The C file contains the main() routine :

#include <BPextern.h>

main (arge , argv)
int arge;
char * argv[];
{

BP_Atom name;
BP_Functor pred;

BIMJProlog_initialize (&argc , &argv);
printf ("Calling PrologW);

name = BIMJProlog_string_to_atom (FALSE , "hello”);
pred = BIM_Prolog_get_predicate (name , 0);
BIM_Prolog_call__predicate (pred);

1-36 November 1990

ProLog by BIM - 3.0 - Principal Components The Linker - Examples

printf ("Returned from PrologNn");
exit (0) ;

The run-time system is generated with the following commands:

% cc -c -I$BIM_PROLOG_DIR/include Appl4.c
% BIMpcomp Appl4
% BIMlinker -h APPL4_HOME -r -HAppl4Data -o -HAppl4Run -m Appl4.o - \

-TCbO Appl4

The output of this BIMlinker call is something like :

Warning : Environment variable APPL4_HOME is undefined.
Using system’s home directory instead.
Linking target file Appl4.wic
Final linking into Appl4Run
Initializing data for Appl4Run
Warning : Cannot expand -HAppl4Data : unknown system home directory.
Warning : Cannot expand -HAppl4Run : unknown system home directory,
compiled /usr/local/Bprolog/demos/runtime/Appl4/src/Appl4.pro
consulted Appl4.pro
Creating initialized data file Appl4Data.

As we did not define the application home directory variable APPL4_HOME, the linker
gives a warning. For this application, this variable is not used and therefore we can ignore
the warnings.

Then the application can be moved to its destination home directory. We will place it in
~/Appl4 :

% mv Appl4Run Appl4Data ~/Appl4

If there is a BIMCODE file with a legal code in that directory, we can start the applica
tion:

% $APPL4__HOME/Appl4Run

This will say something like:

Calling Prolog
Hello from ProLog !
Returned from Prolog

November 1990 1-37

Linker - Examples
ProLog by BIM - 3.0 - Principal Components

i

November 1990

SYNTAX

ProLog by BIM - 3.0 - Syntax Table of Contents

Syntax

Contents

1. Syntax.. 1
1.1 Types range... 3
1.2 Native syntax.. 4
1.3 Dec-10 syntax... 8
1.4 Operators... 9
1.5 DCG’s ... 11

November 1990

Table of Contents
ProLog by BIM - 3.0 - Syntax

November 1990

ProLog by BIM - 3.0 - Syntax Syntax

ProLog by BIM - Reference Manual
Syntax
Chapter 1

Syntax

1.1 Types range..3

1.2 Native syntax.. 4
Introduction...4
ProLog syntax rules..4

1.3 Dec-10 syntax..8
Compatibility..8

1.4 Operators..9

1.5 DCG’s .. 11

November 1990 2-1

Syntax
ProLog by BIM - 3.0 - Syntax

2-2
November 1990

ProLog by BIM - 3.0 - Syntax Syntax - Types range

1.1 Types range

Integers:

The range of integers is from -268435456 up to 268435455 (i.e. 29 bits);
Arithmetic on integers is performed modulo 2 .

Default base is 10 but numbers can be represented in any base from 1 to 36.
Notation is: <base>’<number>
If the base is greather than 10, digits greater than 9 are represented by characters a-z or
A-Z.
For Example: 16’3a7 stands for the hexadecimal number 3a7.

Reals:

Reals are manipulated in double precision: Approximatively 16 significant decimal
digits.
For Example: 5.0 -546.3E23 -0.012e31 78.0e-2

Pointers:

Pointers are coded in 32 bits and are represented by a hexadecimal number beginning
with ’Ox’.
For Example: 0x170056

Atoms:

The length of atoms is restricted to 16384 characters .

Lists:

The length of lists is only restricted by the available memory of the heap.

Functors:

The maximum arity of a functor is 255.

Predicates:

The maximum arity of a predicate is 32.

November 1990 2-3

Syntax - Native syntax ProLog by BIM - 3.0 - Syntax

1.2 Native syntax

Introduction

This section contains the complete ProLog syntax, in the usual (BNF) format.

Note the following:

• Alternatives within a syntax rule are placed on different lines, or separated
by T .

• Spaces in the rules have no syntactic meaning. They are used merely to en-
hance readability.

• Lexical entities are separated from each other by spaces or other separators,
such as <LF> tabs, etc.

ab45 is ONE lexical entity,
whereas the following two strings stand for TWO entities each:

45 ab
**qw.

• Nonterminals are enclosed between <>.

ProLog syntax rules

<program> => ((<directive> . <eoln>) /
(<clause> . eoln>) /
(<query> . <eoln>)

<directive> => <subterm 1199>

<clause>

<head>

<query>

<goals>

<head>
<head> <goals>

<term 1199>
not equal to <integer> or <variable> or <real>

?- <goals>

<subterm 1199 >

<subtermN> => <termM> where M = < N

<termN> => <op(Nfx)> <subterm N-l>
<op(Nfy)> <subterm N>
<subterm N-l> <op(N,xfx)> <subterm N-l>

2-4 November 1990

ProLog by BIM - 3.0 - Syntax Syntax - Native syntax

<term 0> -

<subterm N-l> <op(N,xfy)> <subtermN>
<subtermN> <op(N,yfx)> <subtermN-l>
<subterm N-l> <op(N,xf)>
<subterm N> <op(N,yf)>

=> <functor> (<arglist>)
(<subterm 1200>)
<constant>
<variable>
<list>

op (N,T)> => <name>
A name that has been declared as an operator of type T and
precedence N, but not placed within single quotes.

<functor> - <name>
Not declared as an operator.

<arglist> => <subterm 999>
<subterm 999> , <arglist>

<constant> => <atom>

<list> -

<integer>
<real>
<pointer>

[]
Denotes the empty list.

[<term 1200>]

<variable> => <underscore> <restname>

<atom> => <letter> <alfanum>*

<integer> -

<special sequence>
’ (<char>/”/V)* ’

! / , / ; / []

=> <number>
- <number>
<based number>
- <based number>

<number> => <digit>

November 1990 2-5

Syntax - Native syntax ProLog by BIM - 3.0 - Syntax

<digit> <number>
Range: the range on your machine in 29 bits

<based number> => <base>’ <alfanum> <alfanum>* /
where <base> is an integer between 1 and 36.
For example: 16’abc

35’jl
0’ (<char>/’)
For example: 0’\t

<real> => <integer>

<pointer> =>

.<number>
< integer>. <number>
< integer>. <number><exponent>
<integer> <exponent>

Ox(<digit>lalblc/dlelflAIB/CIDIEIF)*

<exponent> => (E / e) (+ / - / <empty>) <number>

<name> ’ cstring of char>
<lettor> <restname>

1

<special sequenco

<special sequenco
=5 <special char>

cspecial char> <special sequenco

<special char> => + / - / * / / l Al < l > / = l (l ~ / : / - l ? l % / $ l & l @ l \ / # l

<string of char> => <char>
<char> <string o fch a o
inside a string of characters, the \ has the same meaning as
in a C string

<alfanum> =$ <letter>
<digit>
<underscore>

<restname> => <empty>
<alfanum><restname>

2 - 6 November 1990

ProLog by BIM - 3.0 - Syntax Syntax - Native syntax

<char> => Any printable character different from ’ (single quote).

I f the escape character \ is active, the following escape se-
quences are recognized and translated to:

\<cr> nothing (for a string on several lines)
V ’ (single quote)
\\ \ (backslash)
\n <newline>
\t <tab>
\b <backspace>
\r <return>
\f <formfeed>
\0xyz character with ascii code Oxyz (octal)

<letter> A / B / . . . / Z / a / b / . . . / z

<digit> 0 / 1 / 2 / 3 / 4 / 5 / 6 / 7 / 8 / 9

<underscore>
-

<eoln> The end of line character is installation dependent.

<empty>

<comment> { < Any text not containing a } > }
A comment can be placed anywhere, and can serve as a de-
limiter

November 1990 2-7

Syntax - Dec-10 syntax ProLog by BIM - 3.0 - Syntax

1.3 Dec-10 syntax

C ompatibility

The ProLog default syntax differs from the DEC-10 Prolog syntax in the following
ways:

• All variables must start with an underscore.
For example: _var
(See the builtin predicate warn_uppercase/0 and the -c option of the com
piler).

• A quoted string is never considered as an operator. Thus, if + is an infix op
erator, 1 + 2 is a valid term, but, 1 ’+’ 2 is not.

• All operators should have the correct number of operands:
write (+) is erroneous !

• One restriction is placed on the types which an operator can have simulta-
neously: a postfix operator cannot be of any other type.

• [] is treated internally as the atom nil. Write ([]) will therefore display nil and
the goal []=nil succeeds.

• [a] is equivalent to .(a,nil), [a,b] is equivalent to .(a,[b]), [a I b] is equivalent
to .(a,b). The equivalent forms are alway s interchangeabie.

• A point. followed by a space, or an end of line character is not necessarily
an endpoint.
For example: succ(_x,_y) :- _y is _x + 1.
is a clause without an endpoint: 1. is interpreted as the real number 1.0 and
not as the integer 1 followed by an endpoint.

• Literais of type pointer are notated in hexadecimal form with a leading 0x.
For example: 0x0 stands for the null pointer

Oxabc for a pointer with integer value = 2748

Compatibility with the DEC-10 Prolog syntax is offered when using the Option -c of
the compiler and/or the run time system, except that the empty list [] and the atom nil
still unify.

As an extension explicit module qualification is possible in this syntax (see Modules).
Although the DEC-10 syntax does not support the pointer format 0x..., it is possible to
create pointers with the builtin predicate pointertomt/2.

In compatibility syntax mode, the compiler assumes that all unrecognized directives are
queries. As a result, the :-/l operator may be used instead of ?-/l to set queries in a file.

2-8 November 1990

ProLog by BIM - 3.0 - Syntax Syntax - Operators

1.4 Operators
There are three groups of operators:

1) Infix: xfx, xfy, yfx
2) Prefix: fx, fy
3) Postfix: xf, yf

’x’ represents an argument whose precedence must be strictly lower than that of the
operator.
’y’ represents an argument whose precedence is lower or equal to that of the operator.

One is advised not to change the predefined operators which are list below, especially
V a n d T .

Name Type Precedence Usage

xfx 1200 clauses (’if’)
~> xfx 1200 definite clause grammmars

fx 1200 directive
?. fx 1200 queries

xfy 1100 clauses (’or’)

-> xfy 1050 clauses (’if then else’)
dynamic fx 1050 directive
mode fx 1050 directive

xfy 1000 clauses (’and’)
1 xfy 1000 list

\+ fy 900 builtin (’not’)
not fy 900 builtin

module fx 800 directive
import fx 800 directive
local fx 800 directive
global fx 800 directive

from xfx 750 directive

- xfx 700 builtin
is xfx 700 builtin

xfx 700 builtin
= xfx 700 builtin
V xfx 700 builtin
=:= xfx 700 builtin
=\= xfx 700 builtin
7= xfx 700 builtin
< xfx 700 builtin
> xfx 700 builtin

November 1990 2-9

Syntax - Operators ProLog by BIM - 3.0 - Syntax

=< xfx
>= xfx
o xfx
@< xfx
@> xfx
@=< xfx
@>= xfx

index xfx
+ yfx
- yfx
A yfx
V yfx
+ fx
- fx

* yfx
/ yfx
// yfx
« yfx
» yfx

** xfx
mod xfx

A xfy

xfy

For operators declaration, see

builtin
builtin
builtin
builtin
builtin
builtin
builtin

directive
expressions
expressions
expressions
expressions
expressions
expressions

expressions
expressions
expressions
expressions
expressions

expressions
expressions

expressions

directive

Operators and Builtins-Operators.

700
700
700
700
700
700
700

500
500
500
500
500
500
500

400
400
400
400
400

300
300

200

100

Directives-

2-10 November 1990

ProLog by BIM - 3.0 - Syntax Syntax - DCG’s

1.5 DCG’s

DCG (Definite Clause Grammars) is a notational extension of Prolog that makes it easy
to implement formal grammars in Prolog. Grammar rules are translated into Prolog
clauses when they are compiled or consulted under the DEC-10 prolog syntax
(i.e.. -c option for BIMprolog and BIMpcomp).

The transformation of Definite Clause Grammar-rules is described by the following
prolog program to be read in compatibility syntax.

dcg_rule((_nterm, _term --> _dcg_body), (_pro_head _pro_body))
l,
dcg_nonterminal(_nterm, _pro_head, _S0, „ S t),
append(_term, _S, _ S t),
dcg_body(_dcg_body, _pro_body, _S0, _S) .

dcg_rule((_dcg_head —> _dcg_body), (_pro_head _pro_body)) :-
dcg_nonterminal(_dcg_head, _pro_head, _S0, _S),
dcg_body(_dcg_body, _pro_body, _S0, JS) .

dcg_body((_dcg_bl ; _dcg_b2), (_pro_bl ; _pro_b2), _S0, _S):- !,
dcg_body(_dcg_bl, _pro_bl, _S0, _S),
dcg_body(_dcg_b2, _pro_b2, _S0, _S) .

dcg_body((_dcg_bE _dcg_b2), (_pro_bl, _pro_b2), _S0, _S) :- !,
dcg_body(_dcg_b 1, _pro_bl, _S0, _S t),
dcg_body(_dcg_b2, _pro_b2, _St, _S) .

dcg_body(!, !, _S, _S) ! .

dcg_body(({ _pro }), _pro, _S, _S):-.!.

dcg_body([], true, _S, JS) ! .

dcg_body([_h I _t], (_S0 = _St), _S0, _S) ! ,
append([_h I _t], _S, _St).

dcg_body(_nterm, _pro_term, _S0, _S) :-
dcg_nonterminal(_nterm, _pro_term, _S0, _S) .

dcg_nonterminal(_dcg_term, _pro_term, _S0, _S) :-
_dcg_term =.. [_functor I _dcg_arg],
append(_dcg_arg, [_S0, _S], _pro_arg),
_pro_term [_functor I _pro_arg] .

November 1990 2-11

Syntax - DCG’s ProLog by BIM - 3.0 - Syntax

This example on Definite Clause Grammar rules is extracted from:
W.F.Clocksin and C.S.Mellish: "Programming in Prolog"
Springer-Verlag 1981

Example file:

compatibility.

?- op(100,xfx,&).
?- op(150,xfy,

op(100,xfx,&).
op(150,xfy,

sentence(P) --> noun_phrase(X,Pl,P),verb_phrase(X,Pl).

noun_phrase(X,Pl,P) -->
determiner(X,P2,Pl,P),
noun(X,P3),
rel_clause(X,P3,P2).

noun phrase(X,P,P) —>
propernoun(X).

ve r b p h rase (X, P) — >
trans_yerb(X,Y,Pl),
noun_phrase(Y,Pl,P).

verb_phrase(X,P) -->
intrans_verb(X,P).

rel clause(X,Pl,(Pl&P2)) ->
[that], verb_phrase(X,P2).

rel_clause(_,P,P) -->
[].

determiner(X,Pl,P2, all(X,(Pl->P2))) -->
[every].

determiner(X,Pl,P2, exists(X,(Pl&P2))) -->
[a].

noun(X,man(X)) ->
[man].

noun(X,woman(X)) -->
[woman].

2-12 November 1990

ProLog by BIM - 3.0 - Syntax Syntax - DCG’s

proper_noun(john) -->
[John].

trans_verb(X,Y,loves(X,Y)) -->
[loves],

intrans_verb(X,lives(X)) —>
[lives].

Execution:

?- sentence(X,[every,man,loves,a,woman],Q).
X = all(_ll,man(_ll) -> exists(_26,woman(_26) &
loves(_ll,_26)))
Yes ;
No

November 1990 2-13

Syntax - DCG’s
ProLog by BIM - 3.0 - Syntax

-14
November 1990

BUILTIN PREDICATES

ProLog by BIM - 3.0 - Builtin Predicates Table of Contents

Builtin Predicates

Contents

1. Input - Output... 1
1.1 Introduction... 3
1.2 General remarks... 4
1.3 Opening and closing Files.. 5
1.4 Redirection of Standard I/O.. 6
1.5 Reading from files... 9
1.6 Writing to files... 15
1.7 Flushing and file pointer positioning.. 23
1.8 Status of file operations... 24
1.9 Miscellaneous predicates... 25

2. General Builtins.. 27
2.1 Switches... 31
2.2 Conversions... 33
2.3 Atom manipulation.. 39
2.4 In-core database manipulation... 43
2.5 Program manipulation.. 61
2.6 Operators.. 68
2.7 Modules.. 69
2.8 Table manipulation... 70
2.9 Test predicates............................ 72
2.10 Evaluation of expressions.. 76
2.11 Comparison.. 80
2.12 Metalevel... 87
2.13 Execution control... 91

November 1990

Table of Contents ProLog by BIM - 3.0 - Builtin Predicates

2.14 System control.. 95
2.15 Signal handling... 100
2.16 Error handling... 103

11 November 1990

ProLog by BIM - 3.0 - Builtin Predicates Input - Output

ProLog by BIM - Reference Manual
Builtin Predicates
Chapter 1

Input - Output

1.1 Introduction.. 3
Notation... 3
Arguments... 3

1.2 General remarks... 4

1.3 Opening and closing Files............. 5

1.4 Redirection of Standard I/O..6
Standard output... 6
Standard input... 7
Standard error... 7

1.5 Reading from files... 9
Reading terms... 9
Reading characters.. 12
Skipping predicates... 14

November 1990 3-1

Input - Output ProLog by BIM - 3.0 - Builtin Predicates

1.6 Writing to files.. 15
Writing terms...15
Writing characters..18
Formatted write predicates... 19
User-defined write predicates... 22

1.7 Flushing and file pointer positioning.. 23

1.8 Status of file operations... 24
End of file ... 24

1.9 Miscellaneous predicates.. 25

3-2 November 1990

ProLog by BIM - 3.0 - Builtin Predicates Input - Output - Introduction

1.1 Introduction
Notation

Arguments

The ProLog builtin predicates are described as follows :

functor/arity argl :

argn :

where "functor" is the functor name, "arity" is the number of arguments, and "argi : ..."
is a description of the ”i"th argument.

For each argument an indication is given about the required or allowed degree of instan-
tiation for the predicate to make sense.

A distinction is between
• free the argument must be completely free
• ground the argument must be completely instantiated
• partial the argument must not be free
• any no restrictions on this argument

Possible types can be :

• integer
• real
• pointer
• atom
• atomic (= integer, real, pointer or atom)
• list
• term

November 1990 3-3

Input - Output - General remarks ProLog by BIM - 3.0 - Builtin Predicates

1.2 General remarks
Most I/O builtin predicates exist in two variants. The predicates that read from or write
to files, have an arity which is 1 higher than the corresponding predicates which act on
current streams.

I/O predicates used to read from or write to a logical file:
The logical file must be connected to a ’physical’ file by fopen/3 prior to reading or writ
ing. Closing such a file is done with close/1. A file can also be referred to by its file point
er instead of a logical filename. This pointer can be used in external routines. In this way,
one can open files in an external routine and write/read this file from ProLog or external
routines can write/read files opened in a Prolog predicate.
Pathnames in physical file names can be given in an abbreviated format (e.g. ~, ~user,
$ATOM,...). For more information see also the section ’file name expansion’ in Principal
Components.

The logical files stdin, stdout and stderr are always open. They must not be closed.
They refer to the physical file Idevltty (which is the user terminal).

Predicates used to read from or write to the current stream:
The streams are initialised to Idevltty (the physical filename). Redirection is performed
with see/1 (for input), and tell/1 (for output). To know the names of the current streams,
use seeing/1 and telling/1. To close the current streams, use seen/0 and told/0. If the cur
rent stream is Idevltty, these last two predicates succeed, but do not close the streams.
ProLog writes its error messages to the current error output stream which is associated
with stderr (physical name /dev/tty). The current error output stream can be redirected
with tell_err/l and told_err/0. The name of the current error output stream can be con
sulted with telling_err/l.

Two different behaviors are available for reading end-of-file. Either, the read fails, or it
returns a special value. This behavior can be specified with a please/2 option. When the
readeoffail option is set, every read builtin that reads past the end of file fails. When this
option is unset, the read builtins return a special value, that is specified with another op
tion of please/2. Builtins that read characters return the end-of-file character, set with
readeofchar, which defaults to the integer -1. Builtins that read terms, return the end-
of-file atom, set with readeofatom, which defaults to the atom end_of_file.
See also please/2.

UNIX allows the same file to be opened any number of times. This is also possible in
ProLog. No warning is given, although it can cause unusual effects.
The maximum number of files which can be opened simultaneously is operating system
dependent (30 in SunOS 3.5, 64 in SunOS 4).

3-4 November 1990

ProLog by BIM - 3.0 - Builtin Predicates Input - Output - Opening and closing Files

1.3 Opening and closing
Files

fopen/3
fopen (_LogFileName, _PhysF ileN ame, _Mode)
fopen (_FilePointer, _PhysF ileN ame, _Mode)

argl : atom (ground) or pointer (free)
arg2 : ground : atom (has to be a valid physical file name)
arg3 : ground : atom (must be ’w’, V or ’a’)

fopen/3 opens the file with physical filename arg2, for reading (r), writing (w) or ap-
pending (a), (depending on arg3) and associates to it the logical file name argl or,
when free, argl will be instantiated to a file pointer. This logical file name is used in
all I/O operations referring to the same physical file. If the file cannot be opened,
fopen/3 fails.

fclose/l
fclose (LogF ileN ame)
fclose (_FilePointer)

argl : ground : atom or pointer

Closes the file specified by argl. Any subsequent I/O Operation referring to the same
logical file name will fail and will issue a message, except for fopen/3 - because log
ical file names can be reused.

close/l
close (JPhysF ileN ame)

argl : ground : atom

Closes the file specified by argl. If arg7 is a current stream, an error message ap
pear s.

November 1990 3-5

Input - Output - Redirection of Standard I/O ProLog by BIM - 3.0 - Builtin Predicates

1.4 Redirection of
Standard I/O

Standard output

tell/1
teil (JPhysF ileN ame)
teil (JFilePointer)

argl : ground : atom or pointer

The current output stream becomes argl.
If argl is an atom, it must be a physical filename. If the file has aiready been opened
as the current output stream, output will be appended to the file. If the indicated phys
ical file has not yet been opened as current output stream, or has been closed again,
it is opened for writing.
If argl is a pointer it is assumed to be the file pointer of an open file. Output will be
appended to that file.
The previous current output stream is not closed. Failure can occur if the maximum
number of open files is reached or if the file is protected.

told/0
Closes the current output stream and sets the new current output stream to stdout. If
the current output stream was stdout, told/0 succeeds, but does not close stdout.

telling/l
telling (_PhysF ileN ame)
telling (JFilePointer)

argl : any : atom or pointer

The current output stream is unified with argl. If it was opened with a physical file
name, this name is returned. If it was opened with a file pointer, argl is unified with
that file pointer. The name of the current output stream for stdout is Idevltty.

tellingptr/l
tellingptr (_FilePointer)

argl : any : pointer

Argl is unified with the file pointer of the current output stream.

3-6 November 1990

ProLog by BIM - 3.0 - Builtin Predicates Input - Output - Redirection of S ta n d a rd I/O

Standard input

Standard error

see/1
see (_PhysFileName)
see (_FilePointer)

argl : ground : atom or pointer

Analogous to tell/1 but for the current input stream.

seeing/l
seeing (JPhysF ileN ame)
seeing (_FilePointer)

argl : any : atom or pointer

Analogous to telling/1 but for the current input stream. The name of the current input
stream for stdin is Idevltty.

seeingptr/l
seeingptr (JFilePointer)

argl : any : pointer

Argl is unified with the file pointer of the current input stream.

seen/0
Closes the current input stream, and sets the new current input stream to std in . If the
current input stream was std in , seen /0 succeeds, but it does not close std in .

tell_er r/1
telljerr (_PhysFileName)
telljerr (_FilePointer)

argl : ground : atom or pointer

All error messages from ProLog, normally written on std err , will be written on the
file specified by argl. ProLog may still write some (very urgent) error messages on
stderr.
It has an analogous behavior as te ll/1 but for the current error output stream.

told_err/0
Closes the current error output stream and sets the new current error output stream to
stderr. If the current error output stream was std err , to ld _ err /0 succeeds, but it does
not close std err .

November 1990 3-7

Input - Output - Redirection of Standard I/O ProLog by BIM - 3.0 - Builtin Predicates

telling_err/l
telling _err (JPhysF ileN ame)
telling__err (F ilePointer)

argl : any : atom

Analogous to telling/1 but for the current error output stream. The name of the cur
rent error output stream for stderr is Idevltty.

telling_errptr/l
telling jerrptr (FilePointer)

argl : any : pointer

Argl is unified with the file pointer of the current error output stream.

3-8 November 1990

ProLog by BIM - 3.0 - Builtin Predicates Input - Output - Reading from files

1.5 Reading from files

Reading terms

read/2
read (JLogFileName, _Term)
read (_F ilePointer, _Term)

argl : ground : atom or pointer
arg2 : any : term

Arg2 is unified with the next term read from the file specified by argl. rea d /2 reads
characters from the input file until an endpoint is found (i.e. a period followed by
an end of line character)or until it encounters an error.
If any error occurs, read /2 fails and the reason of failure can be tested (see predicate
error_sta tus/3). On syntax errors, an error recovery is performed : the next endpoint
is searched for and the following read /2 will attempt to read the term that follows.
The line producing the error is written to the current error output stream, together
with an indication of the position of the error and an error message.
When read /2 fails because the unification with arg2 fails a complete term from the
input has been read !

read/l
read (Term)

argl : any : term

As read/2, but it reads from the current input stream.
The prompt ’@ ’ is displayed if the current input stream is a terminal (see also
prom pt/1 , p read /2 , and p vread /3). No error recovery is done when the current input
stream is a terminal.
When the eof character (AD) is entered in response to r e a d / l , any subsequent rea d /
1 from the terminal will fail (the top level of ProLog will undo this effect). So, in
writing interactive programs, one should be careful to test for an eof or, if possible,
ignore it.
It is possible to reset eof with fseek /1 -2 predicates.

November 1990 3-9

Input - Output - Reading from files ProLog by BIM - 3.0 - Builtin Predicates

vread/3
vread (JLogF ileName, Term, NameV arList)
vread (FilePointer, Term, _NameVarList)

argl : ground : atom or pointer
arg2 : any : term
arg3 : free : list

The next term from file argl is read and is unified with arg2. List arg3 contains the
names of the variables that appear in the term. This is represented by terms of the
form (name = _var). An example is given in vread/2.

vread/2
vread (_Term, NameV arList)

argl : any : term
arg2 : free : list

Similar to vread/3 but from the current input stream.

For example :

?- vread (term, VarList).
@ struct (go (_x), ’comments’, d, a (_y)).

term = struct (go (_9), comments, _ó, a (_11))
VarList = [x = _9, d = 6, y = 11]

Yes

pread/3
pread (_LogF ileN ame,_Prompt, _Term)
pread (_FilePointer,_Prompt, JTerm)

argl : ground : atom or pointer
arg2 : ground : atom
arg3 : any : term

Reads a term from the file specified by argl using as prompt _arg2. The term that is
read is unified with arg3.

pread/2
pread (Prompt, Term)

argl : ground : atom
arg2 : any

Similar to pread/3 but from the current input stream.

3-10 November 1990

ProLog by BIM - 3.0 - Builtin Predicates Input - Output - Reading from files

pvread/3
pvread (Prompt, Term, NameV arList)

argl : ground : atom
argl : any : term
arg3 : free : list

Similar to vread/3, but from the current input stream and using as prompt _argl.

pvread/4
pvread (JLogF ileN ame, JPrompt, Term, NameV arList)
pvread (_FilePointer,_Prompt, Term, NameV arList)

argl : ground : atom or pointer
arg2 : ground : atom
arg3 : any : term
arg4 : free : list

Similar to pvread/3 but reading is done from the file specified by argl.

sread/2
sread (Atom, Term)

argl : ground : atom
arg2 : any : term

sread/2 reads a term from the atom specified by argl.

For example :

?- sread (?f(_x)’, _y),functor(_y, name, arity).
_y = f (_3)

name = f
arity = 1

Yes

s vread/3
svread (_Atom, Term, _NameVarList)

argl : ground : atom
arg2 : any : term
arg3 : free : list

Combination of sread/2 and vread/3 : the term is read from atom argl.

November 1990 3-11

Input - Output - Reading from files ProLog by BIM - 3.0 - Builtin Predicates

R eading characters

readln/2
readln (_File,_Line)

argl : ground : atom or pointer
arg2 : any : atom

The next text line is read from the file specified by argl and unified with argl. A
text line ends at a newline character or at the end of file. The newline character is
discarded.

readln/l
readln (_Line)

argl : any : atom

Same as readln/2 but from the current input stream.

readc/2
readc (LogF ileName, JChar)
readc (_FilePointer, _Char)

n r o l ' o r n n n P • n t n v n n r - n n i n t p v
— ■ o • o - ------------- - ’

argl : any : atom (of length one)

Argl is unified with the next character on the input file specified by argl.

readc/l
readc (jChar)

argl : any : atom (of length one)

As readc/2 but from the current input stream.

bctr/2
bctr (JLogFileName, JChar)
bctr (JFilePointer, JChar)

argl : ground : atom or pointer
arg2 : any : atom (of length one)

Argl is instantiated to the next character read from the input file specified by argl.
This predicate backtracks until the end of file, and then fails. It is a "backtracking-
read".

3-12 November 1990

ProLog by BIM - 3.0 - Builtin Predicates Input - Output - Reading from files

bctr/1
bctr (JChar)

argl : any : atom (of length one)

As bctr/2, but from the current input stream.

getO/2
getO (JLogFileName, _AsciiCode)
getO (JFilePointer, _AsciiCode)

argl : ground : atom or pointer
arg2 : any : integer

Argl is unified with the ASCII code of the next character from the file specified by
argl.

getO/1
getO (_AsciiCode)

argl : any : integer

As getO/2, but from the current input stream.

get/2
get (LogF ileN ame, _AsciiCode)
get (JFilePointer, AsciiCode)

argl : ground : atom or pointer
arg2 : any : integer

Arg2 is unified with the ASCII code of the next printable character from the file spec
ified by argl. Non-printable characters are simply skipped.

get/l
get (_AsciiCode)

argl : any : integer

As get/2, but from the current input stream.

November 1990 3-13

Input - Output - Reading from files ProLog by BIM - 3.0 - Builtin Predicates

Skipping predicates

skip/2
skip (JLogF ileN ame, _AsciiCode)
skip (JFilePointer, _AsciiCode)

argl : ground : atom or pointer
argl : ground : integer

Skips characters in the file specified by argl, and stops after the first character with
ASCII code argl.

skip/l
skip (_AsciiCode)

argl : ground : integer

As skip/2, but on the current input stream.

3-14 November 1990

ProLog by BIM - 3.0 - Builtin Predicates Input - Output - Writing to files

1.6 Writing to files

Writing terms

write/2
write (LogF ileN ame, T erm)
write (_FilePointer, _Term)

argl : ground : atom or pointer
argl : any : term

Argl is written to the file specified by argl - which is a logical filename or a file
pointer - using the current operator declarations. Any variables in argl will be print
ed as a number, prefixed with an underscore. Each variable has a unique number.

For example :

The ProLog commands

?- fop en (ou tp u tfiïe , ’d a ta .p r o ’, w),
w r ite (o u tp u tfiïe , ’9 th ’), w r ite (ou tp u tfiïe , ’ ’),
w rite (o u tp u tfiïe , S y m p h o n y), w rite (ou tp u tfiïe , ’\n ’),

w rite (o u tp u tfiïe , ’ L u d w ig von B e e th o v e n ’)?
fc lo se(o u tp u tfiïe).

Yes

will create a file ’data.pro’ containing the following lines :

9th S ym p h o n y
L u d w ig v on B eeth oven

write/1
write (JTerm)

argl : any : term

As w rite/2 , but on the current output stream.

writeq/2
writeq (JLogF ileN ame, JTerm)
writeq (_FilePointer, JTerm)

argl : ground : atom or pointer
argl : any : term

As w rite/2 , but atoms that need to be quoted are quoted, and spaces are inserted
where appropriate, so that terms written with w riteq /2 can be read with r e a d / l or
read/2.

November 1990 3-15

Input - Output - Writing to files ProLog by BIM - 3.0 - Builtin Predicates

But :
• The term written is not terminated by a period.

• The same operator declarations should be active when reading, as at the time
of writing.

• If illegal atoms (e.g. ones containing control characters) have been construct-
ed by using n am e/2 or a tom to list/2 , an error message will be issued when re-
reading again.

For example :

The ProLog commands (see also the example in w rite /2)

?- fo p en (ou tp u tfiïe , ’d a ta .p ro ’, w),
w r iteq (o u tp u tfile ,co m p o ser (’L u d w ig von B e e th o v e n ’)),
w r ite (o u tp u tfile ,’.\n ’),
fc lo se(ou tp u tfile).

Y es

will create a file ’data.pro’ containing the following line :

c o m p o se r (’L u d w ig von B eeth o v en ’).

writeq/1
writeq (JTerm)

argl : any : term

As writeq/2, but to the current output stream.

writem/2
writem (_LogF ileN ame, JTerm)
writem (_FilePointer, JTerm)

argl : ground : atom or pointer
arg2 : any : term

As w rite /2 , but all non-global names are written with their explicit module
qualification.

writem/l
writem (JTerm)

argl : any : term

As w ritem /2 , but on the current output stream.

3-16 November 1990

ProLog by BIM - 3.0 - Builtin Predicates Input - Output - Writing to files

dispIay/2
display (JLogF ileN ame, JTerm)
display (_FilePointer, JTerm)

argl : ground : atom or pointer
arg2 : any : term

As write/2. The term is written in normal functor form, except for lists, which are
written with the bracket notation. Operators are quoted and precede their arguments.

display/1
display (JTerm)

argl : any : term

As display/2, but writing is done to the current output stream.

s write/2
swrite (_Atom, JTerm)

argl : free : atom
arg2 : any : term

Argl is instantiated with the atom made of term argl.

vwrite/3
vwrite (LogF ileN ame, Term, NameV arList)
vwrite (_FilePointer, JTerm, _NameVarList)

argl : ground : atom or pointer
argl : any : term
arg3 : partial: list of (atom =free)

Term argl is written to the file specified by argl. Variables are written with the
names mentioned in list arg3. This must be a list of (name = _var) tuples.
It is undefined which of both names will be printed when two variables of the term
are unified.

vwrite/2
vwrite (JTerm, JNameVarList)

argl : any : term
arg2 : partial: list of (atom = _yar)

Similar to vwrite/3 but to the current output stream.

November 1990 3-17

Input - Output - Writing to files ProLog by BIM - 3.0 - Builtin Predicates

svwrite/3
sv write (Atom, Term, _N ame VarList)

argl : free : atom
arg2 : any : term
arg3 : partial: list of (atom = _var)

Combination of swrite/2 and vwrite/3 : argl is instantiated with the atom made of
term arg2.

Writing characters

put/2
put (_LogF ileN ame, _AsciiCode)
put (JFilePointer, _AsciiCode)

argl : ground : atom or pointer
arg2 : ground : integer

The character with ASCII code arg2 is written to the file specified by argl.

put/l
put (_AsciiCode)

argl : ground : integer

As put/2, but to the current output stream.

3-18 November 1990

ProLog by BIM - 3.0 - Builtin Predicates Input - Output - Writing to files

Form atted write predicates

printf/3
printf (_LogF ileN ame, JFormat, JValue)
printf (_FilePointer, JFormat, JValue)

argl : ground : atom or pointer
arg2 : ground : atom
argS : ground : atomic or list of atomic elements

p rin tf/3 writes to the file specified by argl. The format used is specified by arg2 in
much the same way as for the function fprintf of the C language.
The printing specifications of the conversion are :

% d integer printed in d ecim a l notation

% o integer printed in octa l notation without sign and leading zero

%x integer printed in h ex a d ec im a l notation without sign and leading ’Ox’

% u integer printed in u n sig n ed decimal notation

% f real printed in d ecim a l notation

%e real printed in ex p o n en tia l notation

% g real printed in its sh o rtest form (d ec im a l or e x p o n en tia l notation)

% c character

% s string

Between the %-sign and the conversion character the user can give more specifica
tions of the conversion.

n in case of an in teger and a str in g , n is the minimum length of the field

n.m in case of a real, n is the minimum length of the field and m indicates
the number of characters after the decimal point

left adjustment

0 zero padding to the left

For example :

?- p rin tf(m y file ,’5 p r in ted w ith len g th 3 : % 3d \n% 5).
Y es

The elements of arg3 are taken sequentially from the list as arguments to the format.

November 1990 3-19

Input - Output - Writing to files ProLog by BIM - 3.0 - Builtin Predicates

For example :

?- printf (’The total amount is %d %s and %d %s \n’,
[12,’US$%35,cents]).

The total amount is 12 US$ and 35 cents
Yes

Invalid combinations might provoke crashes (just as in C).

printf/2
printf (JFormat, JValue)

argl : ground : atom
arg2 : ground : atomic or list of atomic elements

As printf/3, but the format is argl and writing is done to the current output stream.

sprintf/3
sprintf (_Atom, _Format, JValue)

argl : free : atom
argl : ground : atom
arg2 : ground : atomic or list of atomic elements

Argl is instantiated with the atom made of arg2 and arg3 as specified in printf/3.

nl/1

nl (_LogFileName)

argl : ground : atom or pointer

An end-of-line character is written to the file specified by argl.

nl/0
As nl/1, but to the current output stream.

spaces/2
spaces (JLogF ileN ame, jCount)
spaces (_FilePointer, JCount)

argl : ground : atom or pointer
arg2 : ground : integer

Writes arg2 spaces (arg2 >= 0) to the file specified by argl.

3-20 November 1990

ProLog by BIM - 3.0 - Builtin Predicates Input - Output - Writing to files

spaces/l
spaces (JCount)

argl : ground : integer

As spaces/2, but to the current output stream.

tab/2
tab (_LogFileName, JCount)
tab (_FilePointer, JCount)

argl : ground : atom or pointer
arg2 : ground : integer

Writes arg2 tab characters (arg2 >= 0) to the file specified by argl.

tab/l
tab (JCount)

argl : ground : integer

As tab/2 but to the current output stream.

November 1990 3-21

Input - Output - Writing to files ProLog by BIM - 3.0 - Builtin Predicates

U ser-defined write predicates

print/2
print (LogF ileN ame, JTerm)
print (_FilePointer, JTerm)

argl : ground : atom or pointer
arg2 : any : term

Arg2 is written to the file argl in a user defined format. If there exists a definition of
portray/2 and arg2 is instantiated, this definition is used to write arg2. If arg2 is free
or there is no definition for portray/2, arg2 is written with write/2.

print/1
print (JTerm)

argl : any

Same as print/2, but to the current output stream, and using write/1 or portray/1.

For example :

> ?- print(’aIV).
a/1
> portray(x) writeq(_x).

> ?- print(’a /l’).
’a / l ’
> ?- retractall(portray(_)).

> portray(x) p r i n t f (’printed integer is %3d \n’, x).

> ?- print(3).
printed integer is 3

3-22 November 1990

ProLog by BIM - 3.0 - Builtin Predicates Input - Output - Flushing and file pointer positioning

1.7 Flushing and file
pointer positioning

flush/0
The current output stream is flushed.

flush_err/0
The current error output stream is flushed.

flush/l
flush (JLogF ileN ame)
flush (JFilePointer)

argl : ground : atom or pointer

The file, specified by argl, is flushed.

ftell/2
ftell (_LogF ileN ame, JFilePosition)
ftell (JFilePointer, JFilePosition)

argl : ground : atom or pointer
arg2 : free : integer

Arg2 is unified with the current file pointer position of file argl.

fseek/2
fseek (_LogF ileN ame, JFilePosition)
fseek (_FilePointer, JFilePosition)

argl : ground : atom or pointer
arg2 : ground : integer

The file pointer position of file argl, is moved to position arg2.

Note that, although the type of the argument Jileposition is stated in the manual, pro
grams should not rely on it, since this type may change. In particular, programs
should not perform arithmetic on Jileposition.
Note this special use : fseek(O) resets the filepointer to the beginning of the file.

November 1990 3-23

Input - Output - Status of file operations ProLog by BIM - 3.0 - Builtin Predicates

1.8 Status of file
operations

End of file

eof/1
eof (JLogF ileN ame)
eof (_FilePointer)

argl : ground : atom or pointer

Succeeds if the end of the file specified by argl is reached. The end of file (EOF) is
only reached after an attempt has been made to read past the last character of the file.

eof/0
As eof/1, but for the current input stream.

3-24 November 1990

ProLogbyBIM- 3.0 - Builtin Predicates Input - Output - Miscellaneous predicates

1.9 Miscellaneous
predicates

all_open_files/l
all_open_ßles (JListOpenFiles)

argl : free : list

The list of open files is unified with argl.
For each open file the list contains the physical filename, the logical filename and the
mode the file was opened for (r,w,a).
If the file was opened with see/1 or te ll/1 , a default logical filename is given by the
system.
No information is given concerning std in , std o u t and std err .

For example :

a ll_ o p e n _ file s /l could return the list:

?- fo p en (S R C ,’so u r c e .p r o ’,w).
Yes
?- fo p en (D A T A ,’d a ta .p r o ’,w).
Y es
?- see(in p u t).
Yes
? - a ll_ o p en _ files(_ list).

list = [so u rce .p ro ,S R C ,w ,d a ta .p ro ,D A T A ,w ,in p u t,.6 ,r]

Yes

prompt/1
prompt (_ReadPrompt)

argl : any : atom

If argl is ground, the prompt to be used by r e a d / l and rea d /2 becomes argl. If argl
is free, it is instantiated to the current prompt (see also p rea d /2 , p v rea d /3).
The default prompt is \

iprompt/1
iprompt (_B1M Prolog JPrompt)

argl : any : atom

If argl is instantiated, the ProLog prompt is changed to argl. The default prompt in
no_query mode is ’> \
If argl is free, it is instantiated to the current ProLog prompt.

November 1990 3-25

Input - Output - Miscellaneous predicates ProLog by BIM - 3.0 - Builtin Predicates

exists/l
exists (JPhysF ileN ame)

argl : ground : atom

This succeeds if argl is the physical name of an existing file.

3-26 November 1990

ProLog by BIM - 3.0 - Builtin Predicates General Builtins

ProLog by BIM - Reference Manual
Builtin Predicates
Chapter 2

General Builtins

2.1 Switches.. 31

2.2 Conversions.. 33
Conversion of types... 33
Conversion of terms... 36

2.3 Atom manipulation... 39

2.4 In-core database manipulation..43
Asserting.. 43
Updating... 45
Retracting... 46
Clause retrieval.. 48
Referenced clause manipulation..50
Optimisation... 53
Test predicates... 54

November 1990 3-27

General Builtins ProLog by BIM - 3.0 - Builtin Predicates

Global values.. 55

2.5 Program manipulation.. 61
Listing of predicates... 61
Listing directives... 63
Inquiring atoms, functors and predicates....................................63
Consulting files... 65
Hiding... 67

2.6 Operators.. 68

2.7 Modules... 69

2.8 Table manipulation... 70

2.9 Test predicates... 72
Mode.. 72
Term type.. 72
Functor type.. 74
Predicate type.. 75

2.10 Evaluation of expressions.. 76
Assignment...76
Pointer arithmetic.. 78
Random generator... 79

2.11 Comparison.. 80
Equality... 80
Unification.. 81
Arithmetic comparison... 83
Standard order comparison... 83
Sorting... 84

2.12 Metalevel... 87
All Solutions predicates... 87
Metacall..90
Negation..90

2.13 Execution control... 91
Logical..91
Mark and cut...91
Control builtins for catch & throw..92
Condition..93
Loop..93
Exit from query................................... 94

3-28 November 1990

ProLog by BIM - 3.0 - Builtin Predicates General Builtins

2.14 System control... 95
Exit from ProLog............................... 95
Saved state...95
Information predicates........ 95
Statistics...96
UNIX system calls.. 97
Time predicates... 98
Command level arguments...99

2.15 Signal handling... 100

2.16 Error handling... 103

November 1990 3-29

General Builtins ProLog by BIM - 3.0 - Builtin Predicates

3-30 November 1990

ProLog by BIM - 3.0 - Builtin Predicates General Builtins - Switches

2.1 Switches
please/2

please (jOptionName, JValue)
please (ShortHand, JValue)

argl : ground : atom
arg2 : free or ground

Argl is the name of an option and arg2 is its value. If arg2 is free it is instantiated
to the current value of the option. Otherwise the option’s value is changed to arg2.
The following table gives an overview of available options. The value column
indicates what kind of value the option can take. For most of them this is either the
atom ’on’ or ’off’. The default value of an option is underlined.

ae : a tom escap e on! off Sets the ’Y -escape character active or not.

ed : en vd eb u g on! off Sets the environment debugger on or off.

em : en vm on itor on/off Sets the environment monitor on or off.

c : com p atib ility on/off Controls the parser to accept the DEC-10 Prolog
syntax.

d : debugcod e on/off Indicates if the interactive compiler has to
generate debug code or non-debug code.

e : eva l on/off Translates in-line evaluation

fr : form atrea l atomC %.15e’)
The atom specifies the format with which a real
is printed out. It can be any format that may be
used in a formatted print. For possible formats,
see p rin tf/3 .

q : q u erym od e on/off In querymode, queries can be entered without
having to type the

ra : read eofa tom atom (end of file)
End-of-file atom.

rc : read eofch ar integer (-1) End-of-file ascii-code.

r f : read eoffa il on/off Fail upon reading end-of-file.

s : sh ow so lu tion on/off Specifies whether the solution of a query has to
be printed out or not. If printed out, the system
prompts the user after each solution for a <CR>
to abort the query or a to search the next
solution.

w : w arn on/off Controls output of warnings and error messages

November 1990 3-31

General Builtins - Switches ProLog by BIM - 3.0 - Builtin Predicates

w d : w r ited ep th integer (-1) Printing of a structured term is limited to argl

w f : w rite flu sh on/off

levels of nesting. All sub-terms of that level are
printed as If argl is negative, the limitation
is removed.

Determines whether output operations have to
be followed by a flush.

w m : w r item o d u le on/off Determines the indication of module qualifiers
in printing.

w p : w ritep re fix on/off Determines if operators may be used or have to
be written in normal prefix functor form.

w q : w r iteq u o tes on/off Determines the usage of quotes in printing.
These may be necessary if the printed terms
must be readable by ProLog.

See also the command line please options.

3-32 November 1990

ProLog by BIM - 3.0 - Builtin Predicates General Builtins - Conversions

2 .2 Conversions

Conversion o f types

ascii/2
ascii (JChar, _AsciiCode)

argl : any : atom (of length one)
arg2 : any : integer (range 0..255)

Arg2 is the ASCII code of argl.
At least one of the arguments must be ground.

For example :

?- ascii (a, _x), write(_x).
97
?- ascii(x, 48), write(_x).
0
?- ascii(’\n’, _x), write(_x).
10

inttoatom/2
inttoatom (Jtnteger, Atom)

argl : any : integer
arg2 : any : atom

Arg2 is the atom made with the digits of argl.
At least one of the arguments must be ground.

realtoatom/2
realtoatom (_Real, _Atom)

argl : any : real
arg2 : any : atom

Arg2 is the atom made with the digits of argl.
At least one of the arguments must be ground.

November 1990 3-33

General Builtins - Conversions ProLog by BIM - 3.0 - Builtin Predicates

pointertoint/2
pointertoint (_Pointer, Jnteger)

argl : any : pointer
arg2 : any : integer

Arg2 is the integer value for pointer argl. If the value of argl is outside the range
of integers, it is truncated.
At least one of the arguments must be ground.

For example :

?- p o in ter to in t(_x, 3 2) .
x = 0x20

Y es

pointer toatom/2
pointertoatom (JPointer, Atom)

argl : any : pointer
arg2 : any : atom

Arg2 is the atom representation of the pointer argl. A pointer is represented in
hexadecimal, preceded by ’0x\ Leading zeros in the hexadecimal representation are
omitted in the atom
At least one of the arguments must be ground.

For example :

?- p o in tertoa tom (0x0020 , _ x) .
_x = 0x20

Y es

atomtolist/2
atomtolist (_Atomic, ListOfChar)

argl : any : atomic
arg2 : any : list

Arg2 is the list built from the characters of argl. So, arg2 is a list of atoms of length
one.
At least one of the arguments must be ground.

3-34 November 1990

ProLog by BIM - 3.0 - Builtin Predicates General Builtins - Conversions

For example :

?- a to m to lis t(p ro log , _x), a to m to lis t(_ y , _ x) .
x = [p, r, o, 1, o, g]

_y = p ro log
Yes

When argl is free, its type (atom or number) will be (partially) determined by the
first element of arg2. So, if the first element of the list of arg2 is a numeric character
(which ranges between ’O’ and ’9’), it could be a pointer (if the list starts with the
elements ’O’ and ’x’), a real (if the first part of the list is a combination of numeric
characters and a dot) or an integer (in the other cases, also when an element appears
in the list not belonging to this range).
Due to internal conversions (on integers and reals),atomtolist/2 is not a one-to-one
mapping :

For example :

?- a to m to list(_x , [’0 ’, ’3 ’]) ? a to m to lis t(_x , [’3 ’]) .

Succeeds.

asciilist/2
asciïlist (_Atom, _AsciiList)

argl : any : atom
arg2 : any : list of integer

Succeeds if argl is the atom composed of the symbols in list arg2. These symbols
are the ASCII representation of the characters of the atom.
At least one of the arguments must be ground.

name/2
name (_Atomic, JListOfAsciiCodes)

argl : any : atomic
arg2 : any : list

As atomtolist/2, except that the second argument is a list of ASCII codes instead of
characters.

For example :

?- name(Prolog,_List).
List = [80,114,111,108,111,103]

Y es

November 1990 3-35

General Builtins - Conversions ProLog by BIM - 3.0 - Builtin Predicates

Due to internal conversions (on integers and reals),name/2 is not a one-to-one
mapping :

For example :

?- name(_x, [48,51]), name(_x, [51]).

Conversion o fterm s

Succeeds.

JTerm =.. [JFunctor _ArgList]

argl : partial or free
arg2 : any : list

Pronounced "univ".
Argl is the term built with the elements of the list arg2. The name of the functor of
argl is the first element of the list arg2 and the arguments of the term argl are the
remaining elements (if any) of the list arg2.
If argl is partially instantiated, there are no restrictions on arg2.
If argl is free, arg2 has to be a nil terminated list from which the first element is an
atnm i r*

If argl is atomic, the corresponding second argument is a list, containing only argl.

For example :

?- term [d o c ,a rg l,3 5].
term = d o c (a rg l,3 5)

Y es
?- d oc(p aram ,_ ,23) = .. list.

list = [d oe,param , 2,23]
Y es

functor/3
functor (JTerm, Functor, _Arity)

argl : free or partial
arg2 : any : atom or integer
arg3 : any : integer

Argl is the term with functor arg2, and arity arg3. If argl is free then arg2 and arg3
must be instantiated.

3-36 November 1990

ProLog by BIM - 3.0 - Builtin Predicates General Builtins - Conversions

For example :

?- fu n cto r (_ term ,a ,3).
term = a (_2 ,_3 ,_4)

Y es
?- fu n cto r (a (_ ,_ ,_), fu n c to rn a m e , a r ity).

fu n cto rn a m e = a

a rity = 3

Y es

Note this special case where arg2 is an integer :
?- fu n c to r (l , fu n cto rn a m e, a r ity).

fu n cto rn a m e = 1
arity = 0

Y es

arg/3
arg (ArgNumber, _Term, Arg)

argl : ground : integer
arg2 : partial: term
arg3 : any : term

Arg3 is the argl ’th argument of the term arg2.
If argl <= 0 or argl > arity of arg2 then the predicate fails.

For example :

?- a rg (2 ,a (4 3 ,1 2 ,7 6),_ a rg).

arg = 12

Y es

numbervar s/4
numbervars (JTerm, JLowNum, _HighNum, _Atom)

argl : any : term
arg2 : ground : integer
arg3 : ground : integer
arg4 : ground : atom

Instantiates all variables of argl to a unique atom, constructed according to arg2,
arg3 and arg4. Arg4 must be an atom ending on a character.

November 1990 3-37

General Builtins - Conversions ProLog by BIM - 3.0 - Builtin Predicates

For example :

?- n u m b erv a rs(a (_ w ,_ x ,_ y ,_ z),3 ,5 ,A B C).
_w = A B C 3

x = A B C 4
y = A B D 3
z = A B D 4

Y es

Let X denote the atom arg4 without its last character, then the atoms used to do
the numbering are constructed as follows :

X + last letter of arg4 + arg2
X + last letter of arg4 + (arg2 + 1)

X + last letter of arg4 + (arg3 -1)
(X + last letter of arg4 + 1) + arg2

numbervars/3
numbervars (_Term, JLowNum, _HighNum)

argl : any : term
arg2 : ground : integer
arg3 : ground : integer

n u m b ervars/3 is defined as :
n u m b ervars(_x, _y, _ z) nu m b ervars(_x, _y, _z, A).

For example :

?- n u m b ervars(a (_w ,_x ,_y ,_z),3 ,5).
_w = A 3

_x = A 4

_y = B3
_z = B 4

Y es

3-38 November 1990

ProLog by BIM - 3.0 - Builtin Predicates General Builtins - Atom manipulation

2.3 Atom manipulation
atomlength/2

atomlength (_Atom, _Length)

argl : ground : atom
arg2 : free : integer

The length of argl (number of characters) is unified with arg2.

atomconcat/3
atomconcat (_Atoml, __Atom2, jConcatAtom)

argl : any : atomic
arg2 : any : atomic
arg3 : any : atomic

The instantiated arguments can be of type atom, integer, real or pointer. Non-atom
arguments are automatically converted to atoms before concatenation.
Arg3 is the concatenation of items argl and arg2. At most one of the arguments may
be free.

For example :

?- atomconcat(atom,_part2,atomconcat).
_part2 = concat

Yes

atomconcat/2
atomconcat (JListOfAtomics, JConcatAtom)

argl : ground : list of atomics
arg2 : free : atom

The items of argl can be of type atom, integer, real or pointer. Non-atom
arguments are automatically converted to atoms before concatenation.
Arg2 is the atom that is constructed by concatenating all items of the list argl in the
same order.

For example :

?- atomconcat([atom,concat,’/%2], pred).
pred = atomconcat/2

Yes

November 1990 3-39

General Builtins - Atom manipulation ProLog by BIM - 3.0 - Builtin Predicates

atomconstruct/3
atomconstruct(_Atom, JRepeat, _RepeatAtom)

argl : ground : atom
arg2 : ground : integer
arg3 : free : atom

Arg3 is an atom constructed as a sequence of arg2 times argl.

For example :

?- atomconstruct(atom,5, arg3).
_arg3 = atomatomatomatomatom

Yes

atompart/4
atompart (_Atomy AtomPart, _StartPos, JLength)

argl : ground : atom
arg2 : any : atom
arg3 : any : integer
arg4 : any : integer

Atom arg2 is a part of atom argl, starting at position arg3 and with length arg4. If
arg2 is free, it is instantiated to the part of argl as specified by arg3 and arg4, which
have default values of 1 and the length of argl respectively.
If arg2 is instantiated and arg3 is free, arg3 will be instantiated to the starting
position of the first occurrence of arg2 in argl.

For example :

?- atompart (’pattern matching’, chi, start, length).
start = 12
length = 3

Yes

atompartsall/3
atompartsall (_Atomy _AtomParty StartPos)

argl : ground : atom
arg2 : ground : atom
arg3 : free : integer

This is the non-determiniStic Version of atompart/4. It succeeds for each part arg2
of argl. Arg2 has to be instantiated and arg3 will be instantiated to the starting
positions of the atom parts (by backtracking).

3-40 November 1990

ProLog by BIM - 3.0 - Builtin Predicates General Builtins - Atom manipulation

atomverify/3
atomverify (Atom , _Ve rifyAtom, _Position)

argl : ground : atom
argl : ground : atom
arg3 : free : integer

Atom argl is verified against occurrences of characters in the atom arg2. Arg3 is
instantiated to the first position in argl of a character of arg2. If no such character
of argl appears in argl, arg3 is instantiated to 0.

For example :

?- atomverify (’character’, at, position).
position = 3

Yes

atom ver ify/5
atomverify (_Atom, fVerifyAtom, Start, Length, Position)

argl : ground : atom
arg2 : ground : atom
arg3 : any : integer
arg4 : any : integer
arg5 : any : integer

Atom argl is verified against occurrences of characters of atom arg2. This
verification starts at position arg3 and goes over a length of arg4. The position of
the first occurrence found, is unified with arg5. If no character from arg2 can be
found in the indicated range of argl, arg5 is unified with 0.
A negative length arg4, indicates backward searching from the starting position
arg3.
If the start and length arguments are free, they are instantiated to the default values
of 1 for the start and the remaining length of atom argl for the length.
If the start is free and the length is negative, the start is instantiated to the rightmost
position of argl.
If the length is free and the start is at or beyond the end of argl, the length is
instantiated to the negative length of argl.

For example :

?- atomverify (’character’, a,4,3, position).
position = 5

Yes
?- atomverify (’character’,c,_,-5, position).

position = 6
Yes

November 1990 3-41

General Builtins - Atom manipulation ProLog by BIM - 3.0 - Builtin Predicates

lowertoupper/2
lowertoupper (JLowercase, JJppercase)

argl : any : atom
arg2 : any : atom

If argl is free, it is instantiated to the lower case conversion of arg2. If arg2 is free,
it is instantiated to the upper case conversion of argl. One of the arguments must be
instantiated and the other one free.

3-42 November 1990

ProLog by BIM - 3.0 - Builtin Predicates General Builtins - In-core database manipulation

2.4 In-core database
manipulation

One is advised to be careful when using the prolog database predicates : it is modifying
the code of the program. The result of changing a predicate that is in execution, is
unpredictable (=implementational update).

In order to simulate global data, the record predicates are more suitable.

Asserting

assert/1
assert (jClause)

argl : partial

Argl, which must be a valid clause, is added to the ProLog database.The clause is
added as the last clause of the predicate concerned. The predicate must not be a
loaded static predicate or a builtin predicate.

For example :

?- assert(a(1)), assert ((go a(_x), write(_x), nl)).
x =_9

Yes
?- listing.

a (l) .

go
a(_9),
write(_9),
nl.

Yes

Asserts the fact a/1 and the predicate go/0 that calls a/1.

assert/2
assert (JClause, _SeqNr)

argl : partial
arg2 : ground : integer

As assert/1, except that argl is asserted as the arg2’nd definition. If arg2 is zero or
negative or higher than the current number of clauses in the predicate, argl is
asserted as the last definition.

November 1990 3-43

General Builtins - In-core database manipulation ProLog by BIM - 3.0 - Builtin Predicates

vassert/2
vassert (JClause, _NameVarList)

argl : partial
arg2 : list of (atom = _var)

Same as assert/1 with arg2 a list of elements of the form (name = _var) that gives
the names of the variables in the clause.

For example :

?-vassert((a(_x,_y)write(a(_y,_x))),[(x=_x),(y=_y)]).
x = 14

_y = _15
Yes

vassert/3
vassert (JClause, _SeqNr, _NameV arList)

argl : partial
arg2 : ground : integer
arg3 : list of (atom = _var)

Same as assert/2 with arg3 a list of elements of the form (name = _var) that gives
the names of the variables in the clause.

asserta/l
asserta (JClause)

argl : partial

Asserts clause argl in the database as the first definition of the corresponding
predicate.

assertz/l
assertz (jClause)

argl : partial

Asserts clause argl in the database as the last definition of the corresponding
predicate.

3-44 November 1990

ProLog by BIM - 3.0 - Builtin Predicates General Builtins - In-core database manipulation

Updating

update/1
update (JClause)

argl : partial

If argl is not of the form (_x _y) with _x partially instantiated, it is interpreted
as (_x true).
If no definition exists for the principal functor of _x, then argl is asserted. If one or
more definitions exist, they are all retracted and replaced by argl.

For example :

?- assert(a(123)),
assert(a(456))?
listing(a/l),
write(’—’),
update(a(321)),
listing

(a/1).
a(123).
a(456).

a(321).

Yes

November 1990 3-45

General Builtins - In-core database manipulation ProLog by BIM - 3.0 - Builtin Predicates

R etracting

retract/1
retract (JClause)

argl : partial

The first clause which is unifiable with argl, is retracted from the ProLog database.
On backtracking, the next clause unifiable with argl, is retracted. If no clause
matches, the predicate fails.
If argl is not of the form (_x _y) with _x partially instantiated, the first argument
is interpreted as (_x true).
Only dynamic facts can be retracted with retract/1 .
Retracting may cause unexpected results, if a clause of a predicate is retracted while
this predicate is executing.

For example :
Suppose the internal ProLog database contains the following facts :

fac t(o n e).
fa c t(tw o).
fact(th ree).

th en :

?- fa ct(_ x),retra ct(fa ct(_ y)).
_ x = on e
_y = on e

Y es

retract/2
retract (JClause, _SeqNr)

argl : partial
arg2 : any : integer

As re tract/1 , except that arg2 is the number of the clause. Backtracks if arg2 was
free before the call.

3-46 November 1990

ProLog by BIM - 3.0 - Builtin Predicates General Builtins - In-core database manipulation

retractall/l
retractall (jClauseHead)

argl : partial

All clauses with heads unifiable with argl, are retracted from the ProLog database.
This predicate always succeeds.
If argl is a static predicate, all definitions of this predicate are retracted. New
definitions for the predicate can be loaded. But any pending calls of the predicate
may yield unexpected behavior if the new definitions are dynamic instead of static.
It should be noted that a r e tr a c ta ll / l of a dynamic predicate does not remove any
index or mode information. If this is required, ab o lish /1 or a b o lish /2 should be
used.

abolish/2
abolish(_Name,_Arity)

argl : ground : atom
arg2 : ground : integer

Retracts all definitions of the predicate with name argl and arity arg2. Any index
or mode information about the predicate is also removed.

abolish/1
abolish(_Term)

argl : partial: term

Retracts all definitions of the predicate with same principal functor as argl . Any
index or mode information about the predicate is also removed.

November 1990 3-47

General Builtins - In-core database manipulation ProLog by BIM - 3.0 - Builtin Predicates

Clause retrieval

All clause retrieval predicates, including retract predicates, behave differently for
hidden predicates. They succeed and fail as for visible predicates, but the head and body
arguments are not instantiated (just as the ?=/2 predicate checks for unifiability without
actually instantiating anything). Any other arguments (i.e. reference and index) are
instantiated normally.

clause/2
clause (jClauseHead, jClauseBody)

argl : partial
arg2 : any

Searches a clause in the ProLog database, with a head unifiable with argl. Its body
is unified with arg2. If the retrived clause is a fact, th body is unified with the atom
true. By backtracking, the predicate finds all Solutions.

For example:

Suppose a fact a(l) and a predicate go/0 which prints out this fact:

?- clause(a(_),_body).
body = true

V « o x ca
? - clause(go,_body).

body = a(_4), write(a(_4))
Yes

The compiler ’flattens’ conjunctions and disjunctions in the body of a clause, so
clause/2 and retract/1 can only retrieve ’flattened’ bodies, so the following query
fails :

?- _body=((b,c),d),
assert((a:-_body)),
listing(a/0),
clause(a,_assertedbody),

body = assertedbody.

a
b,
c,
d ,

No

Some static predicates are transformed (\+ | not | DCG’s | ->), so clause/2 may not
give what you expect.

3-48 November 1990

ProLog by BIM - 3.0 - Builtin Predicates General Builtins - In-core database manipulation

argl : partial
arg2 : any
arg3 : any : integer

As clause/2, except that the third argument is the number of the clause. If arg3 is
instantiated at the call, no backtracking is done.

vclause/3
vclause (jClauseHead, JClauseBody, JNameV arList)

argl : partial
argl : any
arg3 : list

Same as clause/2 with arg3 a list of elements of the form (name= value) that gives
the names of the variables in the clause and their values. The values may get
instantiated during the unification of the head in the call of vclause

For example :

> aL x>_y) write(a(_y,_x)).

> ?-vclause(a(_u,_v),_b, vlist).
_u = 12

V = _13
_b = write(a(_13,_12))

vlist = [y = 13,x = 12]
Yes
> ?-vclause(a(l,_v),_b, vlist).

v = 13
h = w rite(a(13,l))

vlist = [y = _135x = 1]
Yes
> -vclause(a([_v|_w],_v),_b, vlist).

v = 14
_w = 15

b = write(a(14,[14 | 15]))
vlist = [y = 14,x = [1 4 | 15]]

Yes
>

clause/3
clause (ClauseHead, JClauseBody, SeqNr)

November 1990 3-49

General Builtins - In-core database manipulation ProLog by BIM - 3.0 - Builtin Predicates

argl : partial
argl : any
arg3 : any : integer
arg4 : list of(atom=free)

Same as dause/3 with arg4 a list of elements of the form (name= value) like in
vclause/3.

vdause/4
vclause (JClauseHead, JClauseBody, _SeqNr, JN ameV arList)

Referenced clause
manipulation

A clause reference is an identifying key, associated with the clause. It is unique and
invariant for each clause (even after dynamic code garbage collection). Previously
asserted clauses (with non-referenced assert or consult) also have an associated
reference (which can be determined with rclause).

rasser t/2
rassert (JClause, jClauseRef)

argl : partial: clause
argl : free : integer

The clause argl is stored in the database and argl is instantiated to its reference.

rasser t/3
rassert (JClause, SeqNr, JClauseRef)

argl : partial: clause
argl : ground : integer
arg3 : free : integer

The clause argl is asserted as argTnd clause of the predicate concemed. If argl is zero
or negative or higher than the current number of clauses in the predicate, argl will be
added as last clause. Arg3 is instantiated to the clause’s reference.

rvassert/4
rvassert (JClause, SeqNr, JClauseRef, JVameVarList)

argl : partial: clause
argl : ground : integer
arg3 : free : integer
arg4 :free : list of (atom - free)

Same as rassert/3 with arg4 a list of the variable names which occur in the clause.

3-50 November 1990

ProLog by BIM - 3.0 - Builtin Predicates General Builtins - In-core database manipulation

rasserta/2
rasserta (JClause, JClauseRef)

argl : partial: clause
arg2 : free : integer

The clause argl is asserted as the first clause of the predicate concerned. Arg2 is
instantiated to its reference.

rassertz/2
rassertz (JClause, JClauseRef)

argl : partial: clause
arg2 : free : integer

The clause argl is asserted as the last clause of the predicate concerned. Arg2 is
instantiated to its reference.

rclause/3
rclause (JClauseHead, JClauseBody, JClauseRef)

argl : any : term
arg2 : any : term
arg3 : any : integer

Arg2 is unified with the body of a clause whose head unifies with argl. Arg3 is
instantiated to the reference of this clause. Different Solutions can be found by
backtracking. If arg3 is ground, argl and arg2 are unified with the head an body of
the clause that has arg3 as reference. If arg3 is free, argl must be partially
instantiated.

rclause/4
rclause (JClauseHead, JClauseBody, _SeqNr, JClauseRef)

argl : any : term
arg2 : any : term
arg3 : any : integer
arg4 : any : integer

Arg2 is unified with the body of a clause whose head unifies with argl. Arg3 is
unified with the position number of this clause and arg4 with its reference. Different
Solutions can be found by backtracking. If arg3 is ground, the clause with that
position number is taken. If arg4 is ground, the clause with that reference is taken.
If arg4 is free, argl has to be partially instantiated.

November 1990 3-51

General Builtins - In-core database manipulation ProLog by BIM -- 3.0 - Builtin Predicates

argl : any : term
arg2 : any : term
arg3 : any : integer
arg4 : list of (atom = value)

Same as rdause/3 with argA a list of elements of the form (name= value) as in
vclause/3 and arg3 the clause reference.

rvclause/5
rvclause (JClauseHead, JClauseBody, _SeqNr,

JClauseRef JN ameV arList)

argl : any : term
arg2 : any : term
arg3 : any : integer
arg4 : any : integer
arg5 : list of (atom = free)

Same as rclause/4 with arg5 a list of elements of the form (name= value) as in
vclause/4 and arg4 the clause reference.

r retract/1
rretract (JClauseRef

argl : ground : integer

The clause with reference argl is removed from the database.

rretract/2
rretract (JClause, JClauseRef)

argl : any : clause
arg2 : ground : integer

The clause with reference arg2 and matching argl is removed from the database.

rretract/3
rretract (JClause, _SeqNr, JClauseRef)

argl : any : clause
arg2 : any : integer
arg3 : ground : integer

The clause with reference arg3 and matching argl is removed from the database.
Arg2 is unified with its position number.

rvclause/4
rvclause (JClauseHead, JClauseBody, jClauseRef, JSameVarList)

3-52 November 1990

ProLog by BIM - 3.0 - Builtin Predicates General Builtins - In-core database manipulation

rdefined/l
rdefined(JClauseRef)

argl : ground : integer

Succeeds if argl is a clause reference for an existing clause.

Optimisation

Dynamic predicates can be indexed on one of their arguments. If desired the indexing
can be hashed. They can also have mode declarations which will be checked in debug
mode.
Index and mode declarations for dynamic predicates can be given with directives (in the
same way as for static code) or with the following builtin predicates.

mode/1
mode (JTerm)

argl : ground : term

The predicate with as functor the principal functor of argl, sets the modes as
indicated in the arguments of term argl.

index/2
index (_Name/_Arity, _ArgNb)

argl : ground : atom/integer
arg2 : ground : integer or integer!integer

The predicate described by argl (in the form _Name!_Arity), is indexed on the
argument specified in arg2. If arg2 has the form of argnr/size, the size is taken as
the length of the hash table based on the indexed argument. Otherwise there is no
hashing.
It is impossible to change the indexing of a predicate.
The default for dynamic predicates is to be indexed on the first argument, regardless
of how the dynamic predicate is created (either by Consulting a file or by asserting
interactively).

Any declaration for a dynamic predicate (dynamic/1, mode/1, index/2) defines the
predicate (even if there are no clauses for it). As a result, reconsulting a file with such a
declaration in it, will retract all existing clauses defining the predicate.

November 1990 3-53

General Builtins - In-core database manipulation ProLog by BIM - 3.0 - Builtin Predicates

An indexed dynamic predicate can be rehashed using:

rehash/2
rehash (_Name/_Arity, _TableSize)

argl : ground : atomlinteger
arg2 : ground : integer

The predicate argl is rehashed with a hash table of size arg2.
Any existing hash table is first removed.
The predicate must have an argument indexed (but not necessarily hashed).

When definitions are asserted for an indexed predicate that is being executed, it is not
assured that these will also be used on backtracking. Furthermore, there may be a
different behavior depending on the argument that is indexed. As the behavior is
undefined, it may also change in future releases. New calls will see the modifications.

Test predicates

h asäd efin itio n /1
has_a_definition(_T erm)

argl : partial : term

Succeeds if the principal functor of argl is a predicate with a definition, be it in
Prolog, in an external language or in a database. The only difference with
current_predicate/2 or predicate_type/2, is that dynamic predicates not necessarily
have a definition. If only a mode/1 or index/2 declaration was issued for a dynamic
predicate, it will exist as predicate, but without a definition.

3-54 November 1990

ProLog by BIM - 3.0 - Builtin Predicates General Builtins - In-core database manipulation

Global values

The predicates for managing the internal database exist in a versions with two keys an
a version with one key. For predicates with two keys, the second key can be viewed as
a domain name. Predicates with one key act on the default domain (default=0).
In the following record predicates if a key is a structured term, the principal functor of
this term (functor name/arity) will serve as key.

The predicates record_push/2 and record_pop/2 can be used for simulating global
Stacks.
The predicates recorded_arg/3 and rerecord_arg/3 are meant for simulating global
arrays.

record/3
record (_Key, DomainKey, Term)

argl : partial: term
arg2 : partial: term
arg3 : any : term

If there is a term in the internal database associated with argl and arg2 then this
call fails. Otherwise a copy of arg3 is stored in the internal database and associated
to those keys.

record/2
record (_Key, JTerm)

argl : partial: term
arg2 : any : term

This predicate is defined as :
record(_Key, Term)record(_Key, 0, Term)

rerecord/3
rerecord (_Key, _Domainkey, JTerm)

argl : partial: term
arg2: partial: term
arg3 : any : term

If there is a term in the intemal database associated with argl and arg2 then it will
be erased first. Then a copy of arg3 is stored in the intemal database and associated
to those keys.

November 1990 3-55

General Builtins - In-core database manipulation ProLog by BIM - 3.0 - Builtin Predicates

rerecord/2
rerecord (_Key, _Term)

argl : partial: term
arg2 : any : term

This predicate is defined as :
rerecord(_Key, Term)rerecord(_Key, 0, Term)

recorded/3
recorded (_Key, _DomainKey, _Term)

argl : partial: term
arg2 ; partial: term
any : term

If there is a term in the intemal database associated with argl and arg2 then this
term is unified with arg3. Otherwise this call fails.

For example :

?- record(keyl,dom,(p(_x):-a(_x),b(_x))),recorded(keyl,dom, term).
_x = _4

term = p(_17) := a(_17), b(_17)
Yes
?- rerecord(keyl,dom,(g(_x):-c(_x),d(_x))),recorded(keyl,dom, term).

_x = _4
term = g (_ 1 7) c (17), d(_17)

Yes

recorded/2
recorded (_Key, JTerm)

argl : partial: term
arg2 : any : term

This predicate is defined as :
recorded(_Key, Term)recorded(_Key, 0, Term)

erase/2
erase (_Key, _DomainKey)

argl : partial: term
arg2: partial: term

Any association with argl and arg2 is erased from the internal database.
This predicate always succeeds.

3-56 November 1990

ProLog by BIM - 3.0 - Builtin Predicates General Builtins - In-core database manipulation

erase/l
erase (_Key)

argl : partial: term

This predicate is defined as :
erase(K ey)erase(_K ey, 0)

erase_all/l
erase _all(_DomainKey)

argl : partial: term

All entries in the internal database with second key argl are erased.

erase_all/0
This predicate is defined as :

erase a l l e r a s e all(O)

is_a_key/2
is_a_key (_Terml, _Term2)

argl : partial: term
arg2: ground : term

Succeeds if the combination of argl and arg2 is used as key. This means that there
is a value associated with them in the internal database.

is_a_key/l
isjajcey (_Term)

argl : ground : term

This predicate is defined as:
is_a_key(_Term) is_a key(Term, 0)

current_key/2
current_key(_Key, _DomainKey)

argl : partial: term
arg2 : partial: term

Succeeds for any currently existing key formed by argl and arg2 . If one or both of
the arguments are free, they are instantiated to all existing combinations, one at a
time, by backtracking.

November 1990 3-57

General Builtins - In-core database manipulation ProLog by BIM - 3.0 - Builtin Predicates

current_key/l
current_key(_Key)

argl : partial: term

This predicate is defined as:
current_key(_Key) current_key(_Key, 0)

The predicates record_push/2 and record_pop/2 can be used for simulating global
Stacks.

record_pop/3
record_pop(_Key, JDomainKey, _ListHead)

argl : partial: term
arg2 : partial: term
arg3 : free : term

Arg3 is the head of the term associated with argl and arg2.
The term associated with those keys is replaced by its tail.

For example :

?- record(keyl,doml,[]),
record_push(keyl,doml,a),
record_push(keyl,doml,b),
record_push(keyl9doml,c)9
recorded(keyl,doml, stack),
record_pop(keyl,doml,_x),
record_pop(keyl,doml,_y),
recorded(keyl,doml,_newstack).

stack = [c,b,a]
_x = c
_y = b

newstack = [a]
Yes

record_pop/2
recordjpop(_Key, JListHead)

argl : partial: term
arg2 : free : term

This predicate is defined as:
record_pop(_Key, Term)record pop(_Key, 0, term)

3-58 November 1990

ProLog by BIM - 3.0 - Builtin Predicates General Builtins - In-core database manipulation

record_push/3
record_push (JKey, _DomainKey, Term)

argl : partial: term
arg2 : partial: term
arg3: any : list

The term associated with argl and arg2 is replaced by a list whose head is arg3 and
whose tail is the previous term.

record_push/2
record_push (JKey, JTerm)

argl : partial: term
arg2 : any : list

This predicate is defined as:
record _p u sh (_K ey , T erm) reco rd _ p u sh (_ K ey , 0, term)

The predicates reco rd ed _ a rg /3 and rereco rd _ a rg /3 are meant for simulating global
arrays.

recorded_arg/4
recorded_arg(_SelectList, Key, DomainKey, _SelectArg)

argl : ground : list of integer
arg2 : partial: term
arg3 : partial: term
arg4: free : term

The index list argl locates arg4 in the term associated with arg2 and arg3. The first
element of the index list is the index in the highest level of the structure determined
by the key.

For example :

?- r e c o r d (k e y l,d o m l,a (l ,b (c (2 ,_ ,x) ,3 ,4) ,5)) ,
r e c o r d e d _ a r g ([2 ,l ,3] ,k e y l,d o m l,_ a r g) .

arg = x
Y es

Meaning that the third argument of the first argument of the second argument of
the term associated with the key, is the atom x.

November 1990 3-59

General Builtins - In-core database manipulation ProLog by BIM - 3.0 - Builtin Predicates

recorded_arg/3
re c o rded arg(S e le ctL ist, JKey, Select Arg)

argl : ground : list of integer
arg2 : partial: term
arg3 : free : term

This predicate is defined as:
reco rd ed _arg (_S electL ist, K ey, T erm)

record ed _arg (_S electL ist, K ey , 0, T erm)

rerecord_arg/4
rerecordargi S electUst, JKey, DomainKey, Select Arg)

argl : ground : list of integer
arg2 : partial: term
arg3 : partial: term
arg4 : ground : term

Arg4 replaces the term, occuring in the term associated with arg2 and arg3, on the
location described by the index list argl. The first element of the list is the index in
the highest level of the stmcture.

rerecord_arg/3
rerecord_arg(J3electList, JKey, _SelectArg)

argl : ground : list of integer
arg2 : partial: term
arg3 : ground : term

This predicate is defined as:
rerecord _arg (_S electL ist, K ey, T erm)

rerecord _arg (_S electL ist, K ey, 0, T erm)

3-60 November 1990

ProLog by BIM - 3.0 - Builtin Predicates General Builtins - Program manipulation

2.5 Program
manipulation

Listing o f predicates
listing/0

All clauses of the ProLog database are written to the current output stream. The
output is a ProLog source program without directives. The builtin predicates and the
hidden predicates are not listed.

For example :

Interactively :

> ?- op(100, xfx, a) .
> _x a y write(ok).
> ?- tell(’file.pro’) , listing , told.
> ?- stop .

Now the file ’file.pro’ contains the clause :

x a _y write(ok).

but not the operator declaration. If a list of all operator declarations is wanted,
use aII_directives/0, defined in the next paragraph.

Variables are generally written with their symbolic names : optimisation may
slightly alter the code syntax.
Variables in clauses, asserted during a query, using (assert/1 or assert/2)
appear as an underscore, followed by a number. To retain the variable names, the
vassert predicates can be used.

listing/l
listing (PredName)
listing (_PredName/_Arity)
listing (JPredList)

argl ■: ground

Argl must be one of the following forms :
• Atom : the clauses of the predicates with functor name argl are listed on the

current output stream.

• Atom/integer : the clauses of the predicate with functor name equal to the
atom, and arity equal to the integer, are listed on the current output stream.

• A list of the above two forms : for any member of the list the corresponding
listing/l instruction is executed.

See also the note on directives in listing/0.

November 1990 3-61

General Builtins - Program manipulation ProLog by BIM - 3.0 - Builtin Predicates

flisting/l
flisting (JLogFileN ame)
ßisting (_FilePointer)

argl : ground : atom or pointer

flisting/l is equivalent to listing/0 but output is sent to the file associated with argl.
This file has to be opened before writing to it.

flisting/2
flisting (_LogF ileN ame, JPredName)
flisting (_FilePointer, _PredName)
flisting (JLogF ileN ame,_PredName /_Arity)
flisting (_FilePointer, _PredName/_Arity)
flisting (_LogFileName, _PredList)
flisting (_FilePointer, PredList)

argl : ground : atom or pointer
arg2 : ground (see argl of listing/l j

flisting/2 is equivalent to listing/l, but the output is sent to the file associated with
argl.

mlisting/1
m listing(Modii leNam e)

argl : ground : atom

Lists all predicates defined in the module argl on the current output stream.

mlisting/2
mlisting(JLogF ileName,JSloduleName)
mlisting(JFilePointer,_ModuleName)

argl : ground : atom or pointer
arg2 : ground : atom

equivalent to mlisting/1 but the output is written to the file specifed by argl.

3-62 November 1990

ProLog by BIM - 3.0 - Builtin Predicates General Builtins - Program manipulation

Listing directives

aIl_directives/0
The current operator declarations and dynamic declarations are listed on the current
output stream.

all_directives/l
alljdirectives (_LogF ileN ame)
alljdirectives (_FilePointer)

argl : ground : atom or pointer

The current operator declarations and dynamic declarations are listed on the file
argl.

lnquiring atoms, functors
and predicates

current_atom/l
current_atom (__Atom)

argl : any : atom

Gives all atoms currently in the ProLog system one at a time by backtracking, or
succeeds once, if argl is instantiated to an atom. Lots of the atoms you will get are
defined by the system (e.g. functor names of builtin predicates.).

current_predicate/2
current_predicate (PredName,_PredTerm)

argl : any : atom
arg2 : any : term

Succeeds for all currently defined predicates with name argl and most general
unifying term arg2. If argl and arg2 are free, this predicate generates the functors
off all existing predicates, one at a time by backtracking.

current_op/3
current_op (_Precedence, _Assoc, jOperator)

argl : any : integer between 0 and 1200
arg2 : any : atom (one of xfx, xfy, yfx, xf, y ffx .fy)
arg3 : any : atom

Gives the operators currently in the ProLog system (arg3), and their precedence
(arg 1) and type (argl), one at a time by backtracking.

November 1990 3-63

General Builtins - Program manipulation ProLog by BIM - 3.0 - Builtin Predicates

current_functor/2
current Junctor (JFuncName, _FuncTerm)

argl : any : atom
argl : any : term

Gives the name of the functors currently in the ProLog system (argl), and the most
general term corresponding to it (argl), one at a time by backtracking.

all_functors/l
all functors (_FuncTerm)

argl : any : term

Gives all general terms currently in the ProLog system one at a time by
backtracking, or succeeds once if argl is a correct term.

3-64 November 1990

ProLog by BIM - 3.0 - Builtin Predicates General Builtins - Program manipulation

Consulting files

consul t/1
consult (JPhysFileName)

argl : ground : atom

Argl is a filename possibly preceeded by some compiler options. The file specified
in argl is consulted, i.e. it is compiled if necessary and loaded into the system. The
filename is expanded following the rules explained with expand_path/2. The
predicate always succeeds.
Options can be any compiler option. More explanation on these options can be
found in - The Compiler - Options.
Static procedures in the file should have a name/arity which differs from all the
procedures already loaded. Dynamic procedures in the file should have a name/arity
which differs from all the static procedures already loaded. If not, a warning is
given, and no loading of the procedure causing the problems takes place.
If the file has been compiled with the -p option, the operators active at compilation
time replace the current active operators.

For example :

?- consult (’-d file’)*

compiles the file ’file.pro’ to debug code and loads it.

?- consult (’-LUnixFileSys’)

consults the UnixFileSys predicates library.

The conventions on passing options to the compiler are as follows. We distinguish
between different sets of options :

previous: those options that were used for the previous compilation of the file

current: the current options of the system that also apply to the compiler (see
below)

specified: the options that are explicitly specified in the consult

The desired options are defined as :
Consult argument
’ file ’
’- file’
’-x -y ... file’

-x -y ... file’

Desired options
previous options
current options of the ProLog engine
previous, overriden by specified options
current, overriden by specified options

November 1990 3-65

General Builtins - Program manipulation ProLog by BIM - 3.0 - Builtin Predicates

Source files are (re)compiled under the following conditions:
• The intermediate code file (.wie) does not exist.

• The Prolog source file (.pro) is more recent than the corresponding .wie file.

• The specified options are different from the previous options.

For clarity, the system will teil which options are used for the recompilation or
which ones were used in the previous compilation.
The following table lists the current ProLog options that have an equivalent
compile-time Option (see 'BIMpcomp Options).

BIMprolog BIMpcomp
-Pc -c
-Pd -d
-Pe -e
-Pw -w
-Pae -x

A short hand notation exists for Consulting files, using the list notation. An example
can be found in reconsult/1, explained hereafter.

reconsult/l
reconsult (_PhysF ileN ame)

argl : ground : atom

Most of the comments in consult/1 also apply to this predicate. But the definitions
in the file erase the existing procedures with the same name/arity in the ProLog
database. This is true for static an dynamic predicates, but not for external predicates
and database relations. A static predicate however should be replaced by a new static
predicate, otherwise any pending calls of the predicate may yield unexpected
behavior if the new definitions are dynamic instead of static.
The predicate always succeeds.

For example:

Suppose ’ demo.pro’ was not compiled before, and the Interpreter is activated
with default options :

?- [demo].
compiling demo.pro { Using defaults }
consulted demo.pro

3-66 November 1990

ProLog by BIM - 3.0 - Builtin Predicates General Builtins - Program manipulation

?- [-’-d demo’].
compiling -d demo.pro { Compile to debug code }
reconsulted demo.pro

?- [-demo]. { Using previous options }
compiled -d demo.pro { No recompilation : -d is remembered }
reconsulted demo.pro

?- [-’-c demo’]. { Override previous options with -c }
compiling -c -d demo.pro { Recompile : -d is still remembered }
reconsulted demo.pro

?- [-’- demo’]. { Use current options : defaults }
compiling demo.pro { Recompilation : no -d, no -c }
reconsulted demo.pro

Hiding

hide/1
hide (JTerm)

argl : partial: term

The predicate defined by the principal functor of argl is hidden. This means that
listing/0 (and all its variants) will no longer display the definitions (if any) of this
predicate. Clause/2 and its variants will succeed but the variables will not be
instantiated. All builtin predicates are hidden.
The predicate always succeeds.

November 1990 3-67

General Builtins - Operators ProLog by BIM - 3.0 - Builtin Predicates

2.6 Operators
op/3

op (Precedence, _Assoc, jOperator)

argl : any : integer between 0 and 1200.
arg2 : ground : atom (one of xfx, xfy, yfx, xf, yf, fx, fy)
arg3 : ground : atom or list of atoms

If argl is instantiated, the atom arg3, or all atoms of the list arg3 are made an
operator with precedence argl and type arg2. The scope of this operator declaration
is the current interactive session.
If argl is instantiated to 0, the operator definition with name arg3 and type arg2 is
removed (if it existed).
If argl is free, it is instantiated to the precedence of the operator with name arg3 and
type arg2 if such an operator exists, otherwise it fails.
To declare an operator in a file, it is not sufficiënt to establish the operator
interactively, use the directive op/3 .
A conflicting operator declaration overrides the previous declaration.
It is possible to override builtin operators, or to have two operators with the same
name, provided that one is binary (xfy, yfx, xfx) and the other unary (fx, fy, yf, xf).

The list of predefined operators can be founu in the Syntax part of this manual.

3-68 November 1990

ProLog by BIM - 3.0 - Builtin Predicates General Builtins - Modules

2.7 Modules
This paragraph contains the builtin predicates related to modules. More information can
be found in the Module part of this manual.

module/1
module (_ModName)

argl : any : atom

If instantiated, the current module becomes argl. If free, argl will be instantiated to
the name of the current module.

module/2
module (_Predicate, JModName)

argl : partial: not integer, real or pointer
arg2 : any : atom

Unifies arg2 with the module qualification of the principal functor of argl.

module/3
module (jQualTerm, JModN ame, JTerm)

argl : any
arg2 : any : atom
arg3 : any

Arg3 is the term constructed from argl by stripping the module qualification from
the principal functor of argl, and unifying this qualification with arg2. If argl is
free, arg2 must be an atom and arg3 must be partially instantiated.

mod_unif/2
modjunif (JTerml, JTerm2)

argl : any
arg2 : any

Unifies the 2 arguments, as if they had no module qualification at any level (i.e as if
they belonged to the global module).

November 1990 3-69

General Builtins - Table manipulation ProLog by BIM - 3.0 - Builtin Predicates

2.8 Table manipulation
A full description of the different tables and the possible manipulations can be found in
The Engine - Table Options. The next section explains the builtin predicate table/2
which has three possible usages.

table/2
table (jOptionld, jOptionValue)

argl : ground : atom
arg2 : any : atom

Argl is the name of an Option and arg2 is its value. If arg2 is free, it is instantiated
to the current value of the option. Otherwise the value of the option is set to arg2.
Possible options and values are:

w : warn on/off
t : time integer value
If arg2 is free, it will instantiated to the time spent in garbage collection
and table expansion since the last reset.
If arg2 is instantiated, it resets the time counter for garbage collection
and table expansion to the value arg2.

table (Tableid, JTableCommand)

argl : ground : atom
arg2 : ground : atom

This usage is for executing table commands. Argl is the table identifier and arg2 is
the command. The indicated command is performed on table argl if possible.
Currently, there is only one possible command: collect. This invokes garbage
collection and table expansion if necessary and possible

table (JFableld, JParamS elängs)

argl : ground : atom
arg2 : ground : atom

ground : list of atom
any : list of integer or real (of length 4)

With this usage, the table parameters can be set at run-time or their values can be
retrieved
Argl specifies the table.
If arg2 is an atom, it defines the value of one parameter of table argl. If arg2 is a
list of atoms, it contains parameter settings for table argl.
Arg2 can be a partially instantiated list of integers or reals. In this case it is a
positional list of length 4. The instantiated elements define a new value for the
corresponding parameter of table argl. The free elements will be instantiated to the
current value of the corresponding parameter of table argl.

3-70 November 1990

ProLog by BIM - 3.0 - Builtin Predicates General Builtins - Table manipulation

The correspondence between the position in the list and the defined parameter is as
folio ws:

Position Parameter
1
2
3

base
expansion
treshold

4 limit
If arg2 is free, it will be instantiated to a list of 4 elements, containing the current
parameter values of table argl.

November 1990 3-71

General Builtins - Test predicates ProLog by BIM - 3.0 - Builtin Predicates

2.9 Test predicates

Mode

var/1
var (JTerm)

argl : any : term

Succeeds if argl is a free variable,

nonvar/l
nonvar (_Term)

argl : any : term

Succeeds if argl is (partially) instantiated.

ground/l
ground (Term)

argl : any : term
NllPPPPrlQ if nrol ic rnrrml^tMv incfgnti------------------------- -- . . . j . . . ^ . u . u u ^ u

Term type

atom/1
atom (Term)

argl : any : term

Succeeds if argl is an atom.

integer/l
integer (Term)

argl : any : term

Succeeds if argl is an integer.

real/l
real (JTerm)

argl : any : term

Succeeds if argl is a real.

3-72 November 1990

ProLog by BIM - 3.0 - Builtin Predicates General Builtins - Test predicates

pointer/l
pointer (JTerm)

argl : any : term

Succeeds if argl is a pointer.

number/1
number (JTerm)

argl : any : term

Succeeds if argl is either a real or an integer.

atomic/l
atomic (JTerm)

argl : any : term

Succeeds if argl is a real, an integer, an atom or a pointer.

term_type/2
term_type(JTerm,JType)

argl : any : term
arg2 : any : atom

The type of term argl is unified with arg2. The type is described with one of the
following names :

Term Type
Free variable var
Integer integer
Real real
Pointer pointer
Atom atom
Functor functor

November 1990 3-73

General Builtins - Test predicates ProLog by BIM - 3.0 - Builtin Predicates

Functor type

static_functor/l
static Junctor (_Term)

argl : partial: term

Succeeds if argl is a static predicate.

dynamic_functoi7l
dynamic functor (Term)

argl : partial: term

Succeeds if argl is a dynamic predicate.

database_functoi71
database Junctor (JTerm)

argl : partial: term

Succeeds if argl is a relation in the currently open external database.

exter nal_functoi71
externalJunctor (JTerm)

argl : partial: term

Succeeds if argl is an external predicate.

hidden_functoi71
hidden_Junctor (JTerm)

argl : partial: term

Succeeds if argl is a hidden predicate.

builtin/1
builtin (JTerm)

argl : partial: term

Succeeds if argl is a builtin predicate.

3-74 November 1990

ProLog by BIM - 3.0 - Builtin Predicates General Builtins - Test predicates

Predicate type

predicate_type/2
predicate _type(_Term,_Type)

argl : partial: term
arg2 : any : atom

The type of term argl, whose principal functor is a predicate, is unified with arg2.
This predicate fails if arg Ts functor is not a predicate. The type is described with
one of the following names :

Term Type
Builtin predicate builtin
Static predicate static
Dynamic predicate dynamic
Database predicate database
External predicate external

November 1990 3-75

General Builtins - Evaluation of expressions ProLog by BIM - 3.0 - Builtin Predicates

2.10 Evaluation of
expressions

An expression can be evaluated by calling the builtin is /2 , or it can be evaluated in-line
with the evaluation builtin ? /l . Any appearance of a ? / l term is replaced by the value
that is the result of evaluating the argument. This is accomplished by a compile time
source translation. To avoid this translation, the compiler option -e can be used to
disable it.

For example:

The program below writes the numbers from 10 to 1.

> co u n t_ d o w n (0) .
> cou n t_d ow n (C o u n t)

w rite (C o u n t), cou n t_d ow n (? (C o u n t - 1)) .
> ?- co u n t_d ow n (10) .

The second clause is equivalent to the transformed clause :

> cou n t_d ow n (C o u n t)
w rite (C o u n t),

C o u n tl is C ount - 1, co u n t_ d o w n (C o u n t l) .

An in-line evaluation may also appear in the head of a clause.

A ssignm ent

is/2
_Result is _AritExpr

argl : any : real or integer
arg2 : ground : term

The term arg2 is evaluated and the result (integer or real) is unified with argl.
Arg2 must be a term built with one of the following functors:

3-76 November 1990

ProLog by BIM - 3.0 - Builtin Predicates General Builtins - Evaluation of expressions

functor arity function

+ 2 addition
- 2 subtraction
* 2 multiplication
/ 2 division (if one of the operands is real, the result

is real, else the result is an integer)
II 2 integer division (if the operands are real, they are

converted to integer before the division is
attempted; the result is an integer)

mod 2 modulo operator
** 2 exponentiation
A 2 exponentiation
trunc 1 trunc ation
round 1 rounding
real 1 convert integer to real
abs 1 absolute value
sign 1 sign
+ 1 unary +
- 1 unary -
\ 1 bitwise not (complement)
A 2 bitwise and (conjunction)
V 2 bitwise or (disjunction)
» 2 bitwise right shift
« 2 bitwise left shift

Also the following
expression:

cos/1
acos/1
sin/1

mathematical functions can be used inside an arithmetic

exp/1
pow/2
sqrt/1

asin/1
tan/1
atan/1
atan2/2

Iogl0/1
log/1

November 1990 3-77

General Builtins - Evaluation of expressions ProLog by BIM - 3.0 - Builtin Predicates

Note that
• real arithmetic is performed using in double precision.

• modulo and bitwise operations only succeed on integer arguments. If the
operations are called with non-integer arguments a warning is displayed.

• tru n c/1 truncates a positive real to the largest integer smaller than or equal
to it. Moreover, tru n c(-f) = - tru n c(f). If i is an integer, tru n c(i) = i.

• round(r) = trunc(r + 0.5) and round(-r) = - round(r) for positive r.

• overflow is not detected.

• division by 0 is detected and a warning is displayed.

For example:

?- _x is 1.5 + sqrt(1.0 + exp(2)),
_r is sqrt(__x**2 + 3 * * 2) .

_ x = 4 .396386731590008e+ 00
_r = 5 .322425790342282e+ 00

Y es

The builtin is/2 can be defined in Prolog as:
? _X is _X .
To clarify this, let’s rename this predicate to IS :
IS(? (_X) , _X) .
Which is equivalent to :
IS(_Y , _X) _Y is _X .

Moreover, by using the external language interface one can perform the arithmetic
operations in another language (C, Pascal, Fortran,...) and use the available libraries.

Pointer arithmetic

pointer offset/3
pointer offset(_Po interl, Offset, Po inte r2)

argl : any : pointer
arg2 : any : integer
arg3 : any : pointer

Pointer argl, adjusted with offset arg2, is pointer arg3. At most one of the
arguments may be free. The offset can be positive or negative.

3-78 November 1990

ProLog by BIM - 3.0 - Builtin Predicates General Builtins - Evaluation of expressions

Random generator

A random generator is available: it generates integers in the range 0 to 228-l.

srandom/1
srandom (Seedlnt)

argl : ground : integer

Argl is the seed for the generator.

random/1
random (Randlnt)

argl : free : integer

Argl is the output of the random generator.

For example :

?- sra n d o m (1 7 5 6 7 7 0 9 8),ra n d o m (_ x).
x = 22662 9 0 9 2

Yes

November 1990 3-79

General Builtins - Comparison ProLog by BIM - 3.0 - Builtin Predicates

2.11 Comparison

Equality

==/2
Terml == Term2

argl : any : term
arg2 : any : term

This succeeds if argl is identical to arg2.
For this comparison to succeed even any variables within the terms must be
identical. It is therefore a ’stronger’ test than unification

For example :

?- _ x = 5 , _y= 5 , _y= = _x .
_x = 5

_y = 5
Yes
?- _ x = a , _y= =_x.
No
?- _ x = 5 , _y= 5.0 , _x= = _y .
No

k==/2
Terml V== Term2

argl : any : term
arg2 : any : term

Equivalent to \+(==/2), where W/l is explained in the section 3.8 - Metalevel.

For example :

?- _x\==5 .
_x = _0

Yes
?- 5\==5 .
No
?- 5\==5.0.
Yes

3-80 November 1990

ProLog by BIM - 3.0 - Builtin Predicates General Builtins - Comparison

Unification

?=/2
Terml ?- Term2

argl : any : term
arg2 : any : term

Succeeds if argl and arg2 are unifiable, but it does not unify them.

For example :

?- 5 ?= 5 .
Yes
?- 5 ?= 76 .
No
?- _x?= 5 .

_x = 0
Yes

=/2
F er ml = Term2

argl : any : term
arg2 : any : term

Unifies argl with arg2 if possible, otherwise fails.

For example :

?- x = p(4,b).
x = p(4,b)

Yes
?- p(_x,_y) = p(4,b).

x = 4
_y = b

Yes
?- p(4,a) = p(4,b).
No

W2
Terml V Term2

argl : any : term
arg2 : any : term

Succeeds if argl and arg2 are not unifiable.

November 1990 3-81

General Builtins - Comparison ProLog by BIM - 3.0 - Builtin Predicates

occur/2
occur (JTerml, _Term2)

argl : any : term
arg2 : any : term

Unifies argl with arg2 if the unification does not create infinite terms, otherwise
fails.
This predicate implements ’sound’ unification. The predicate is very useful in
avoiding problems with infinite terms.

For example :

Trying to unify ...
?- [_x|_t] = [a,b|_t].

... loops infinitely, while occur/2 simply fails ...

?- occur([_x|_t],[a,b|_t]).
No

occur s/2
occurs (Part. _Term)

argl : any : atomic
arg2 : any : term

Succeeds if argl occurs in arg2, eise fails.

For example :

?- occurs(l,[6,2,4,l,7]).
Yes
?- occurs(c,g(b(d,a))).
No

3-82 November 1990

ProLog by BIM - 3.0 - Builtin Predicates General Builtins - Comparison

Arithmetic comparison

Standard order comparison

The arguments of the builtin predicates below must be ground, they must be arithmetic
expressions built according to the rules mentioned in is/2.
Atom comparison is not supported by these predicates; use Standard order comparison
instead.

_AritExpl operator _AritExp2

argl : ground : term
arg2 : ground : term

Operator Checks if

>12 The evaluation of argl is greater than the evaluation of arg2

<12 The evaluation of argl is less than the evaluation of arg2

>=/2 The evaluation of argl is greater than or equal to the evaluation of arg2.

=</2 The evaluation of argl is less than or equal to the evaluation of arg2.

<>/2 The evaluation of argl is different from the evaluation of arg2.

=\=/2 The evaluation of argl is different from the evaluation of arg2.

=:= /2 The evaluation of argl is equal to the evaluation of arg2.

There is no restriction on the arguments of the builtin predicates below. They refer to
the so called ’Standard order of terms’.

Terms are ordered according to the following criteria:

• Variables @< atoms @< numbers @< pointers @< terms

• Variables are ordered according to their age (roughly).

• Atoms are ordered alphabetically.

• Numbers are ordered numerically.

• Pointers are ordered numerically.

• Terms are ordered according to their arity.

• If the arities are equal, they are ordered according to their name

• If name and arity are equal, they are ordered recursively according to their
arguments, from left to right.

November 1990 3-83

General Builtins - Comparison ProLog by BIM - 3.0 - Builtin Predicates

Terml @Operator_Term2

argl : any : term
arg2 : any : term

(d) Op erator

@</2
@>/2
@=</2
@>=/2

Action

Checks if argl is less than arg2.

Checks if argl is greater than argl.

Checks if argl is less than or equal to argl.

Checks if argl is greater than or equal to arg2.

For example :

?- _a @< _b,
_b @< atom,
atom @< aton,
aton @< 12,
12 @< 23.2,
23.4 @< func(_a),
func(_a) @< func(f(a)),
funcff(a)) @< func(f(12)),
func(f(12)) @< func(_,_).
_a = 9

b = 10

Sorting

sort/2
sort(_List,_S ortedList)

argl : ground : list of term
argl : free : list of term

The list argl is sorted in ascending Standard order, and any doublés are removed.
The resulting list is unified with arg2.

For example :

?- sort([2 , abc , f(3), 2] , _X) .
_X = [abc,2,f(3)]
Yes

3-84 November 1990

ProLog by BIM - 3.0 - Builtin Predicates General Builtins - Comparison

keysort/2
keysort(_List,_S ortedList)

argl : ground : list of (term-term)
argl : free : list of (term-term)

List argl should contain elements of the form (_Key-JValue), where both _Key and
JValue may be terms. It is sorted in ascending Standard order on the _Key parts.
The resulting list is unified with argl. Duplicates are not removed. Elements with
the same key remain in the same order as in the original list.

For example :

?- keysort([k3-val3 , k l-v a ll , k3-vaI3b , k2-vaI2] , _X) .
X = [kl - vall,k2 -val2,k3 - val3,k3 - vaI3b]

Yes

keysort/3
1ceysort(_List,_KeyPred,_S ortedList)

argl : ground : list of (term-term)
argl : ground : atom
arg3 : free : list of (term-term)

The predicate with name argl and arity 2 is used to retrieve the key part of each
element in list argl. This list argl is sorted in ascending Standard order on the keys
that are returned by the key predicate. The resulting list is unified with argl.
Duplicates are not removed.
The key predicate argl is specified as
KeyPred/2

_KeyPred(_KeyValueT erm,_Key)

argl : ground : term
argl : free : term

Argl is unified with the key part of key/value term argl.

For example :

> data([tabIe(Smith,John,London),
table(Y anHalen, John,New Y ork),
table(Smith,Emmy,Brussel)]) .

> getkey(table(_Keyl,_Key2, Value), Key 1- Key2) .
> ?- data(Data), keysort(Data , getkey , _X).

X = [table(Smith,Emmy,Brussel),table(Smith, John,London),
table(VanHalen,John,NewYork)]

Yes

November 1990 3-85

General Builtins - Comparison ProLog by BIM - 3.0 - Builtin Predicates

keysort/4
keysort(_List,_Template,_Key,_S ortedList)

argl : ground : list of (term-term)
arg2 : partial: term
arg3 : partial: term
arg4 : free : list of (term-term)

List argl should consist of elements of the form arg2 (i.e. each element of the list
must be unifiable with arg2). The key part of such an element is given by arg3. The
list argl is sorted in ascending Standard order on the keys that are determined by the
template and key. The resulting list is unified with arg2. Duplicates are not
removed.

For example :

> data([tale(Smith,John,London), table(VanHalen,John,NewYork),
table(Smith,Emmy,Brussel)]) .

> ?- data(Data), keysort(Data , table(_Keyl,_Key2,_),
_Keyl-_Key2, _X).

_X = [table(Smith,Emmy,Brussel), table(Smith,John,London),
table(VanHalen,John,NewYork)]
Yes
>

The data is sorted, first on the first argument of table/2, and for equal first argu
ments, next on the second argument.

keysort/2 is described in terms of keysort/4 as:
keysort(List, SortedList)

keysort(List, JKey - J^alue , _Key , SortedList) .

The data is sorted, first on the first argument of table/2, and for equal first
arguments, next on the second argument. This is determined by the predicate
getkey/2.

3-86 November 1990

ProLog by BIM - 3.0 - Builtin Predicates General Builtins - Metalevel

2.12 Metalevel

AU Solutions predicates

findaIl/3
findall (jCollect, _Goal, JSolutionList)

argl : any
arg2 : partial: term
arg3 : any : list

Arg3 is alist of all instances of argl for which arg2 succeeds. Instances are ordered
as they were entered in the ProLog database, including duplicates. An empty list is
returned when no solution is found.

For example :

Suppose the ProLog database contains the following facts :

a(3,2,h).
a(7,3,b).
a(2,5,i).
a(3,3,h).
a(9,4,m).

Then,

?■ findall(point(_x,_y),a(_x,_y,h),_list).
x = JL2

_y = 13
list = [point(3,2),point(3,3)]

Yes

bagof/3
bagof (JCollect, _Goal, _SolutionList)
bagof (Collect, Exist A_Goal, _SolutionList)

argl : any
arg2 : partial: term
arg3 : any : list

Arg3 is a list of all instances of argl for which arg2 holds. Instances are ordered as
they were entered in the ProLog database, including duplicates. There is
backtracking on the values of all the variables occuring in arg2 and not in arg l,
(even on free variables). This predicate fails if arg2 is not properly instantiated, and

November 1990 3-87

General Builtins - Metalevel ProLog by BIM - 3.0 - Builtin Predicates

also when no Solutions exist.
In order to avoid backtracking, the following notation for arg2 may be used: _a A _b
In this case, no backtracking will occur on the values of the variables occuring in _a.
This is called existential quantification

For example :

Suppose the ProLog database contains the following facts :

a(5,2,h).
a(7,3,b).
a(2,5,i).
a(3,3,h).
a(9,4,m).

Then,

?- bagof([_x,_y],a(_x,_y,_z),list).

{Give me the list list [_x,_y] for each _z for which a(_x,_y,_z) succeeds}

x = 11
_y = _13
_z = h
Jist = [[5,2],[3,3]]

Yes ;
_x = 11
_y = _13
_z = b
Jist = [[7,3]]

Yes ;
x = 11

_y = _13
_z = i
Jist = [[2,5]]

Yes;
x = 11

_y = _13
_z = m
Jist = [[9,4]]

Yes ;
No

November 1990

ProLog by BIM - 3.0 - Builtin Predicates General Builtins - Metalevel

?- bagof([_x,_y],_zAa(_x,_y,_z),_list).
{Give me the list list of [_x,_y] such that there exists a _z for which
a(_x,_y,_z) succeeds}

x = _9
_y = _ n

z = 14
Jist = [[5,2],[7,3],[2,5],[3,3],[9,4]]

Yes

Since in the notation _a A _b, _a may be any term, the above goal is equivalent to:

?- bagof([_x,_y], f(_z)Aa(_x, _y,_z), list).

setof/3
setof (JCollect, _Goal, _SortedSolutionList)
setof (JCollect, JExist A_Goal, _SortedSolutionList)

argl : any
arg2 : partial: term
arg3 : any : list >

As bagof/3, except that duplicates are discarded and the output list is ordered
according to the Standard order comparison @< (See section 3.7).

November 1990 3-89

General Builtins - Metalevel ProLog by BIM - 3.0 - Builtin Predicates

Metacall

call/1
call (jGoal)

argl : partial

call(_x) is equivalent to the metacall _x. A !/0 inside a metacall cuts away
backtrackpoints up to the parent of the clause in which the metacall appears. Fails if
_ x

is free.

Negation

W 1
\ + Goal

argl : partial

This succeeds if the principal functor of argl is not provable, otherwise it fails. No
check is made to see whether argl is ground or not.

not/l
not JGoal

argl : ground

As \+/l but checks whether argl is completely instantiated. If the argument is
ground, the execution of the query terminates immediately and control returns to the
toplevel of the ProLog engine.

3-90 November 1990

ProLog by BIM - 3.0 - Builtin Predicates General Builtins - Execution control

2.13 Execution control

Logical

fail/0
Always fails.

true/0
Always succeeds.

Mark and cut

1/0
Discards all choice points made since the parent goal started execution.

mark/1
mark (jCutMark)

argl : free : integer

Sets a marker and instantiates argl to it.

cut/l
cut (JCutMark)

argl : ground : integer

The call to cut/l cuts away all choicepoints created since mark/1 with the same
argument. The argument of cut/l should be the same as the argument of mark/1 at
the same level, i.e. within the same clause definition.The absence of a specification
of what happens in other cases should discourage the undisciplined use of mark/1
and cut/l. More than one cut can refer to the same mark. Although the type of
_CutMark is stated in the manual, programs should not rely on it, since it may
change. In particular, programs should not perform arithmetic on _CutMark

For example :

a mark(_x), b, c, cut(_x).

The call to mark/1 instantiates _x to an integer whose value is irrelevant to the
prolog programmer. cut/l uses this integer to cut away the choicepoints created
by b and c.

November 1990 3-91

General Builtins - Execution control ProLog by BIM - 3.0 - Builtin Predicates

Control builtins for
catch & throw

block/3
block(JGoal,_Catcher,_Recovery)

argl : partial: term
arg2 : partial: term
arg3 : partial: term

The goal argl is executed. If this goal succeeds, then the call of block/3 succeeds.
If it fails, this call also fails.
If during the execution of the goal argl, exit_block/l is called, the execution control
is changed. An implicit cut and fail is performed up to the call of block/3. Then the
ball argument of the exit_block/l call is unified with the catcher arg2. If this
unification succeeds, the recovery handler arg3 is called, and its success or failure
determines the success or failure the block/3 call.
If the unification of ball and catcher does not succeed, another cut and fail is
performed up to the next, older invocation of block/3. An error occurs if there is no
active call of block/3 whose catcher matches against the ball of the exit_block/l.

exit_block/l
exit_block(_Ball)

argl : partial: term

Terminates execution of the most enclosing block/3 call whose catcher argument
matches the ball argl.
See also block/3

For example :

The catch & throw predicates are useful for error handling. The following call in-
stalls an application specific error handler for executing _Goal:

block(Goal, app error(ErrNr, Data),
app_err_handler(_ErrNr,_Data))

To raise an error during execution of this goal:

exit_block(app_error(123,_ErrData))

The error number (123) and some specific error data is passed to the error handler
via the ball-catcher link. The application error handler will be called with this
data.

3-92 November 1990

ProLog by BIM - 3.0 - Builtin Predicates General Builtins - Execution control

Condition

->/2
JffGoal -> ThenGoal
_IfGoal -> _ThenGoal; _ElseGoal

The specification of if then else in ProLog is :
IfGoal -> T h en G oa lIfG oa l, !, ThenGoal.

(IfGoal -> ThenGoal); E lse G o a lI fG o a l, !, ThenGoal.
(IfGoal -> ThenGoal); E lse G o a lE lse G o a l.

A clause containing an if then else construct is transformed in the following way :
g l -> g2; g3

becomes
mark(markO), (gl, cut(jmarkO), g2; g3)

and

g l -> g2
becomes

mark(markl), (gl, cut(markl), g2)

For example :

?- assert(test(a)).
Yes
?- (test(a) -> write(ok); write(nok)).
okYes
?- (test(b) -> write(ok); write(nok)).
nok Yes

Loop

repeat/0
This backtrackable predicate always succeeds. It is defined as :

repeat.
repeat:-repeat.

November 1990 3-93

General Builtins - Execution control ProLog by BIM - 3.0 - Builtin Predicates

Exit front query

exit/0
Stops the current query, and returns to the toplevel of the ProLog engine.

abort/0
The same as exit/0.

3-94 November 1990

ProLog by BIM - 3.0 - Builtin Predicates General Builtins - System control

2.14 System control
Exit fromProLog

halt/0
Ends a ProLog session.

stop/0
The same as halt/0.

Saved state

save/1
save(_PhysFileName)

argl : ground : atom

Saves the current state of the session. All predicates, except the external ones, are
saved. Saving should only be performed when no external database is open.
A saved state can be restored by invoking the engine with the special option -r
followed by the filename argl.

information/2
informatio n (K ey, _Ide n tificatio n)

argl : ground : atom
arg2 : free : list of atoms

The information data, associated with key argl is returned in the list arg2. Possible
keys for argl are :

information/1
information(_Key)

argl : ground : atom

The information data, associated with key argl is printed on stderr.

information/0
All information data is printed on stderr.

Information predicates

Argl
version
copyright
owner
distributor

Arg2
[machine,os,release number,release date]
[copyright notice]
[coordinates BIM]
[coordinates of your local distributor]

November 1990 3-95

General Builtins - System control ProLog by BIM - 3.0 - Builtin Predicates

Statistics

statistics/3
statistics (all, _)
statistics (Option, _TotalSize, JUsed)

argl : ground : atom
arg2 : free : integer
arg3 : free : integer

Arg2 and arg3 are instantiated to the total size and used size of the table indicated
by argl.
Possible tables are:

argl table
H heap
S local stack
I interpreted code
C compiled code
D constant data
F functors
Sp permanent strings
St temporary strings
B K o o V n n f i p o nu u w v u p X IV U J ^

R record keys
If argl is instantiated to the atom all, the statistics of all the tables is printed on the
current output stream. Arg2 and arg3 remain uninstantiated.

statistics/O
This predicate is defined as:

statistics statistics(all,_,_).

3-96 November 1990

ProLog by BIM - 3.0 - Builtin Predicates General Builtins - System control

UNIX system colts

shell/1
shell (_ShellContmand)

argl : ground : atom

Argl is a shell command and it is executed in a new shell. The new shell is of the
same type as indicated in the environment in which ProLog is running.

For example :

?- shell(date).
Fri Dec 31 23:59:59 MET 1999
Yes

system/1
system (_ShellCommand)

argl : ground : atom

The same as shell/l.

sh/0
Equivalent to shell(sh).

csh/0
Equivalent to shell(’csh’).

For example :

?- csh.
csh % date
Fri Dec 31 23:59:59 MET 1999
csh %AD
Yes

getenv/2
getenv(_Var, Value)

argl : ground : atom
arg2 : free : atom

arg2 is instantiated to the value of the environment variable with name argl.

For example :

?- getenv(HOME,_val)
val = /prolog/tests

Yes

November 1990 3-97

General Builtins - System control ProLog by BIM - 3.0 - Builtin Predicates

Time predicates

expand_path/2
expand_path(JPath,ExpPath)

argl : ground : atom
arg2 : any : atom

The path argl is expanded and unified with arg2.
The following meta symbols are recognized. They may only be used at the
beginning of the path.

Symbol Expansion
- Home directory of the user ($HOME)
-user Home directory of ’user’
$VAR Value of VAR in environment
-Llibraryfile The first library directory in which the given filename is found.

Library directories are searched in the following order:
1. All directories given in the library path environment
variable ($BIM_PROLOG_LIB). In the same order as given in
that variable.
2. The system library directory ($BIM_PROLOG_DIR/lib/).
3. The working directory

-Hfile The file will be looked for in the ProLog home directory
D P O T m p w d __x i v v y x j v y v i __J L / u v y

cputime/1
cputime (jCpuTimeUntilNow)

argl : free : real

Argl is instantiated to the number of seconds of user CPU time of the BIMprolog
process used since ProLog was started.
The accuracy of cputime/1 is operating system dependent.

time/1
time (JGoal)

argl : partial

Argl is considered as a goal and is executed. The time in seconds taken to execute
the input goal is written on the current output stream.

time/2
time (JGoal, jCpuTimeTillSuccess)

argl : partial
arg2 : any : real

As time/1, but arg2 is instantiated to the time needed to execute argl.

3-98 November 1990

ProLog by BIM - 3.0 - Builtin Predicates General Builtins - System control

Command level arguments

argc/1
argc(_Number)

argl : any : integer

Succeeds with argl the number of command line arguments. Only user-defined
arguments, i.e. arguments after the delimitor (the sign between blanks), are
counted.

argv/l
argviA rgList)

argl : free : list of atoms

Succeeds with argl the list of command line arguments. Only arguments after the
delimitor (the sign between blanks), are counted.
The arguments appear in the list in the same order as on the command line. They
are all passed literally as atoms.

argv/2
argv(_Index,_ArgValue)

argl : ground : integer
arg2 : any : atom

Succeeds with arg2 the argl ’th command line argument. Only arguments after the
delimitor (the sign between blanks), are counted. The argument is passed
literally as an atom.

For example :

csh % BIMprolog - Useroptionl Useroptionf2
ProLog by BIM - release 3.0 Sun4 01-Nov-1990
?- argv(l, ArgValue).

ArgValue = Useroptionl
Yes

November 1990 3-99

General Builtins - Signal handling ProLog by BIM - 3.0 - Builtin Predicates

2.15 Signal handling
The signal handling mechanism of ProLog provides the user with easy-to-use tools to
catch and handle UNIX Signals. This is achieved by installing signal handler predicates
for the signals of interest.
Whenever a signal occurs, the query being executed is interrupted at the next call port.
The corresponding handler predicate is then executed and after a solution is found, the
interrupted query is resumed. If there are other Solutions left for the handler predicate,
they will be found on backtracking. If the handler has no Solutions at all, the interrupted
query is resumed with a failure (causing backtracking).
When the handler predicate is called, the signals of the same type are suspended until
the control is explicitely reset to accept status. The supported signals are the Unix ones::
SIGINT, SIGSEGV, SIGPIPE,...

A number of signals have a default handler installed. This handler prints out a message
of the form *** SIGNAL *** SIGname and terminates the current query.

The following predicates can be used to install handlers.

install_prolog_handler/2
install jprologjiandler (JSignal, _PredicateName)

argl : ground : atom
ui gz. . giuunu . uturn

The predicate with name argl and arity 2 is installed as handler for signal argl.

Such a signal handler predicate has the following specification:
signal_hanciler_predicate/2

signaljtandler predicate (_Signal, JGoal)
argl : ground : atom
arg2 : partial: term

When the signal for which this signal handler is installed, is caught, this predicate
will be called with argl instantiated to the signal name, and with argl the goal
which was in execution.

install_externaI_handler/2
installjßxternaljtandler (Signaly _Pointer)

argl : ground : atom
arg2 : ground : pointer

The external routine with address arg2 is installed as handler for signal a r g l .

3-100 November 1990

ProLog by BIM - 3.0 - Builtin Predicates General Builtins - Signal handling

which_prolog_handler/2
which jirologjtandler (_Signal, _PredicateName)

argl : ground : atom
arg2 : any : atom

Argl is unified with the name of the current prolog handler predicate for signal argl.
The predicate fails if no prolog handler exists.

which_exter nal_handler/2
which_external_handler (Signal, _Pointer)

argl : ground : atom
argl : any : pointer

Argl is unified with the address of the current external handler routine for signal
argl. The predicate fails if no external handler exists.

Some predicates exist to control the signal delivery.

signal/2
signal (JSignal, Atom)
signal (_Signal, JTerm)

argl : ground : atom
arg2 : partial: atom or compound term

The handling of signals of type argl is controlled, depending on the value of argl'.
accept
pending or new signals will be handled as soon as possible

ignore
subsequent signals are ignored

suspend
subsequent signals are suspended until they are accepted again

raise
a signal is generated

clear
pending signals are cleared

status/2
status (_State, _NbOfSignals)

argl : free : atom
arg2 : free : integer

Argl is instantiated to the state of the signal handling,
being accept, ignore suspend, raise or clear.
Argl is instantiated to the number of pending signals.

November 1990 3-101

General Builtins - Signal handling ProLog by BIM - 3.0 - Builtin Predicates

wait/0
This predicate waits until a signal occurs and then succeeds.

wait/1
wait (JSignal)

argl : ground : atom or list of atoms

This predicate waits until a signal from argl occurs and then succeeds.
If argl is the empty list, this predicate behaves as wait/0.

toplevel/l
toplevel (JPredicateName)

argl : ground : atom

The current query is terminated immediately and the toplevel query
?- PredicateName is started.

One application of this predicate is to call it at the end of a signal handler, when the
suspended query must not be resumed.

3-102 November 1990

ProLog by BIM - 3.0 - Builtin Predicates General Builtins - Error handling

2.16 Error handling

error_message/2
error_message(_Messages,_S witch)

argl : ground : integer or list of integers
arg2 : any : atom : on]off

The error messages specified in argl are switched on or off as indicated by arg2. In
case an error occurs for which the message is switched off, it is treated as in warning
off mode : no message is printed out.
Messages can be specified with an integer number for a single message, or with a
list of integers indicating several single messages, or integer pairs of the form _x-_y,
specifying the range of messages from _x to (inclusive).
The switch argument arg2 may be free for single integer argl. In this case, it will
be instantiated to the current switch status of the specified message.

error_ status/3
error_status (_ErrClass, _ErrNumber, _InfoList)

argl : free : atom
arg2 : free : integer
arg3 : free : list

If there is an error pending, it is reported. Argl is the error dass (such as
OVERFLOW, WARNING, ...). Argl is the number of the error. Any additional
parameters for the error are given in arg3. This depends on the type of error.
After this inquiry, the error status is cleared. If no error occured since the previous
status inquiry, the predicate fails.

error_print/0
The latest error is printed out, regardless of the warn switch. If no error messages
have been issued previously on will be generated.

error_raise/3
error_raise(JErrClass,_ErrNumber,_InfoList)

argl : ground : atom
arg2 : ground : integer
arg3 : ground : list

An error with number arg2 and of dass argl is issued, with arg3 as argument
information list.
The error dass name (argl) must be one from the table below.

November 1990 3-103

General Builtins - Error handling ProLog by BIM - 3.0 - Builtin Predicates

The argument information list (arg3) must contain all the arguments that appear in
the message. These can be integers, atoms or functors (in the form of a term). For
the BUILTIN dass errors, the first argument of that list must be the name of the
builtin, in the form name/arity.

The error messages can be customized by means of an error description file. This file
gives a description of which error messages must be handled and how they must be
rendered. At the installation of ProLog, such a description file must be provided, for
linking into the BIMprolog executable. At run-time, any program can modify the error
handling by incrementally loading a description file. The default error description file
is:

$BIM_PROLOG_DIR/install/errors.pro

By instructing the ProLog linker (BIMlinker) to use another error description file, the
error handling can be customized at installation time. To modify it at run-time, the
builtin error_load/l must be used.

error_Joad/l
error_load(_ErrorF ile)

argl : ground : atom

The error description file argl is consulted. It replaces the previous error
descriptions. Such an error description file contains facts for the following
predefined predicates:

errclass/4

errclass(ClassNr,ClassId,ClassText,_C lassMessage)

argl : ground : integer
arg2 : ground : atom
arg3 : ground : atom
arg4 : ground : atom

The error dass with number argl gets as internal identifier arg2, and as text for
rendering arg3. A global dass message is given as arg4.
The dass number argl must be in the range from 1 to 16. It is only used by the
system to uniquely identify the error classes. The internal identifier is used in the
builtins error_status/3 and error_raise/3 to identify the error dass. The error dass
text is printed in error messages between the *** markers. The global dass message
follows the second *** marker, preceeding the specific error message.
The global message may refer to the error arguments with %i, for the i’th argument.

3-104 November 1990

ProLog by BIM - 3.0 - Builtin Predicates General Builtins - Error handling

The system predefined error classes are:
Index Name
1 SYNTAX
2 SEMANTIC
3 COMPOVFL
4 WARNING
5 RUNTIME
6 BUILTIN
7 OVERFLOW
8 MODE

These classes should not be redefined, except for the corresponding text.
Redefining the dass identifier may break programs that use the error handling
builtins.

crrordinal/2

err_ordinal(_Ordinal,_OrdinalText)

argl : ground : integer
arg2 : ground : atom

This predicate gives the textual representation arg2 of ordinal number argl. The
text arg2 is used in an error message when referring to the argl9th argument.
The ordinal must be in the range from 1 to 5. And there should be a definition for
each of these five ordinals.

err_msg_range/2

err_msg_range(_ErrorN umberF rom,_ErrorN umberT o)

argl : ground : integer
arg2 : ground : integer

A range of error messages is specified. The first number of the range is argl and
the last is arg2. Any existing error message ranges that overlap with this range, are
discarded.
The range minimum must be greater than 0, and its maximum must be greater than
the minimum.
All defined error messages must be in an existing range, except for the special error
message with number 0.
The system predefined error message range is from 100 to 999.
At most 255 different ranges may be defined.

November 1990 3-105

General Builtins - Error handling ProLog by BIM - 3.0 - Builtin Predicates

err_msg/2

err_msg(_ErrorN umber,JErrorM es sage)

argl : ground : integer : 100.2000
arg2 : ground : atom

The message arg2 corresponds to the error with number argl.
The error number must be in one of the defined error message ranges (see
err_msg_range/2), except if it is 0. This special message is a catchall: it is used for
each error that has no associated message defined.
The text may refer to the error arguments with %i, for the i ’th argument.

3-106 November 1990

DIRECTIVES

ProLog by BIM - 3.0 - Directives Table of Contents

Directives

Contents

1. Directives... 1
1.1 General directive... 3
1.2 Dynamic and static.. 4
1.3 Debugging... 4
1.4 Compatibility... 5
1.5 Hiding... 5
1.6 File inclusion... 5
1.7 Optimisation.. 6
1.8 Operators... 8
1.9 Modules... 9

November 1990

Table of Contents ProLog by BIM - 3.0 - Directives

ii November 1990

ProLog by BIM - 3.0 - Directives Directives

ProLog by BIM - Reference Manual
Directives
Chapter 1

Directives

1.1 General directive..3

1.2 Dynamic and static...4

1.3 Debugging..4

1.4 Compatibility..5

1.5 Hiding... 5

1.6 File inclusion................................... 5

1.7 Optimisation...6

1.8 Operators..8

1.9 Modules...9

November 1990 4-1

Directives ProLog by BIM - 3.0 - Directives

4-2 November 1990

ProLog by BIM - 3.0 - Directives Directives - General directive

Introduction

1.1 General directive

Directives are parser or compiler commands which influence the way clauses are parsed
and translated. Definitions of predicates can be mixed with directives, but this compli-
cates later understanding of how the program executes, especially when module direc
tives are used. (See Modules). Most of the directives mentioned in this chapter have an
equivalent builtin predicate.

A directive has the following form

<body> .

It looks like a clause without a head.

General remark : the arguments of directives have to be ground. If one of the arguments
of a directive is incorrect, either a warning is given, or an error message appears, and
the directive is ignored.

option/l
argl : ground : atom or list of atoms

The option or option list argl is set. Each option setting is formed by a letter, indi-
cating the option and possibly a + or - to set the option value. If this is omitted, the
previous value is toggled.
The corresponding directives are still supported for compatibility.

Option Default Description Directives

a _ Generate dynamic code alldynamic
c - Parse in DEC-10 syntax [no] compatibility
d - Generate debug code set[no] debug
e + Translate in-line evaluation -
h - hide predicates [no]hide
1 - Generate listing file -
P - Include operator definitions -
w + Give warning messages -
X + Allow \ as atom escape sign -

For example:

option(’d+’).

November 1990 4-3

Directives - Dynamic and static ProLog by BIM - 3.0 - Directives

1.2 Dynamic and static

1.3 Debugging

dynamic/1
argl : ground : atom/integer

The predicate with name and arity specified by argl is compiled as a dynamic pred
icate. By default, predicates are compiled to static code. The dynamic/1 directive is
defined as a prefix operator.
Remark
If the dynamic/1 directive appears after a module declaration, then a local/1 direc
tive for argl is implied. Such dynamic/1 declaration is useful only for predicates
defined in the same module and can be applied to both global and local predicates.

For example:

module(one).
dynamic a/4 .
global b /2 .
dynamic b/2.

This defines a local dynamic predicate a/4 and a global dynamic predicate b/2 .

alldynamic/O
All predicates in the file following the alldynamic/O directive are dynamic.

For the following two directives we refer to Debugger.

setdebug/O
All predicates in the file following the setdebug/O directive and before any setnode-
bug/0 directive are translated into debug code.

setnodebug/O
All predicates in the file following the setnodebug/O directive are translated into
no_debug code.

4-4 November 1990

ProLog by BIM - 3.0 - Directives Directives - Compatibility

1.4 Compatibility

compatibility/O
The rest of the file following the compatibility/O directive will be parsed in the DEC-
10 Prolog syntax.

warn_uppercase/0
A warning is issued for each atom which starts with an uppercase letter. This can be
used to translate sources coming from other Prolog environments where an upper
case stands for a variable.

1.5 Hiding

hide/0
All predicates in the file following the hide/0 directive and before any nohide/0 di
rective are hidden. This influences the builtin predicates listing and clause.

nohide/0
All predicates in the file following the nohide/0 directive are visible. This influences
the builtin predicates listing and clause.

1.6 File inclusion

include/1
argl : ground : atom

The file is "included" textually in the source file by the compiler, (i.e one file is com-
posed by inserting the contents of file argl at the place of the directive. The whole
file is submitted as a unit to the compiler). As a result, any directives in the included
file are also active in the second part of the original source file.
Pathname expansion on argl is done automatically (~, ~<user>, $<variable>,-L,-
H).

November 1990 4-5

Directives - Optimisation ProLog by BIM - 3.0 - Directives

1.7 Optimisation

mode/1
argl : ground : term

With this directive, one can indicate the intended input-output use of a particular
predicate. The directive is defined as a prefix operator.
There are 3 possible modes for an argument:

i (+) the argument is ground when the predicate is called
o (-) the argument is free when the predicate is called
? (?) anything else

The symbols between parentheses can be used in compatibility mode (’-c’ option).

For example :

mode append(i, i, o) .

declares that append will only be called with its first two arguments completely
instantiated and with the third argument free. The compiler uses this information
to generate more efficiënt code for static and dynamic predicates.

Remarks
1. Errors in mode declarations can lead to fading goals or (exceptionally) to ma
chine exception, i.e. Segmentation faults.

2. If the mode/1 directive appears after a module declaration, a local/1 directive for
argl is implied. Such mode/1 declaration is useful only for predicates defined in the
same module and can be applied to both global and local predicates.

For example:

:-module(one).
:-mode a /4 .
•.-global b /2 .
:-mode b /2 .

This defines a local predicate a/4 and a global predicate b/2 .

4-6 November 1990

ProLog by BIM - 3.0 - Directives Directives - Optimisation

index/2
argl : ground : atom!integer

. argl : ground

The compiler uses this directive to generate special indexing instructions on the ar-
t gument(s) arg2 of the predicate with name and arity specified by argl. The directive

is defined as a infix operator.
Static predicates
Argl must have the form : integer or (integer, integer, ...)
At most 3 arguments can be specified.
The order in which arguments are used for indexing is the same as given by the user
in the index declaration, except that T mode arguments are indexed on before ’?’
mode arguments and ’o’ mode arguments are never indexed on.
The default indexing is on the first 3 arguments.
Dynamic predicates
Argl must have the form : integer or integer l/integer2.
When specified, integer2 is taken as the length of the hash table.
Otherwise there is no hashing.
At most 1 argument can be indexed.
By default, the compiler will index dynamic predicates on their first argument.
Remarks
1. If an index declaration is given for a predicate, the compiler will never index on
arguments that are not specified. But the compiler will not always index on the ar
guments that are specified. For instance, an index put on an output argument - as
specified by a mode declaration for the same predicate - is meaningless.

For example:

append/3 index (3 ,1).
mode (append (i, ?, o)).

with the usual definition of append/3.
This results in indexing on argument 1 only : argument 3 is an output argument
and so, it is not a reasonable candidate for indexing.

2. To avoid the indexing completely, specify 0 as argl.
3. If the index/1 directive appears after a module declaration then a local/1 directive
for argl is implied. Such index/1 declaration is useful only for predicates defined
in the same module and can be applied to both global and local predicates.

November 1990 4-7

Directives - Operators ProLog by BIM 3.0 - Directives

1.8 Operators

For example:

r-module(one).
:-a/4 index (2,3).
:-global b/2 .
:-b/2 index (1,2).

This defines a local predicate a/4 and a global predicate b/2 .

op/3
argl : ground : integer between 0 and 1200.
arg2 : ground : atom (one of xfx, xfy, yfx, xf, yf, fx, fy)
arg3 : ground : atom or list of atoms
The atom arg3 or the list of atoms arg3 are made operators with precedence argl
and type arg2. The directive is only active in the rest of the file.
If argl is 0, the operator definitions for arg3 with type arg2 are omitted.
If the directive appears after a module declaration then a local/1 directive for arg3
is implied.
The full list of the predefined operators is mentioned in Syntax.

For example

without explicit module qualification:

:-module(mod).
:-op(100,yfx,plus).
_x plus _y res is _x + _y, w rite(res).
a(_x> _ j) _ x p1us j y •

with explicit module qualification:

:-module(mod).
:-op(100,yfx,plus).
_x plus$mod _y res is _x + _y, write(res).
a$m od(_x,_y)_x plus$mod _y .

4-8 November 1990

ProLog by BIM - 3.0 - Directives Directives - Modules

1.9 Modules
The directives on modules are mentioned below. More explanation and some examples
can be found in Modules.

module/1
argl : ground : atom

The module name is set to argl.

local/l
argl : ground : atom : name/arity

The local/l directive is defined as a prefix operator and is used to declare argl as a
local functor.

global/1
argl : ground : atom : name/arity

The global/1 directive is defined as a prefix operator and is used to define argl as a
global functor.

import/l
argl : ground : term
The import/l directive is defined as a prefix operator and is used to enable the use,
inside one module, of predicate argl of another module. Argl is declared with the
predefined from/2 infix operator.

November 1990 4-9

Directives - Modules ProLog by BIM - 3.0 - Directives

(This page intentionally left blank.)

4-10 November 1990

MODULES

ProLog by BIM - 3.0 - Modules Table of Contents

Modules

Contents

1. Modules.. 1
1.1 Introduction.. 3
1.2 Directives.. 3
1.3 Module builtin predicates.. 6
1.4 Explicit module qualification.. 8
1.5 Resolving module qualification.. 8
1.6 General builtins and modules.. 9
1.7 General directives and modules.. 10
1.8 Interactive mode and modules... 10

November 1990

Table of Contents ProLog by BIM - 3.0 - Modules

November 1990

ProLog by BIM - 3.0 - Modules Modules

ProLog by BIM - Reference Manual
Modules
Chapter 1

Modules

1.1 Introduction.. 3

1.2 Directives... 3

1.3 Module builtin predicates..6

1.4 Explicit module qualification... 8

1.5 Resolving module qualification.. 8

1.6 General builtins and modules... 9

1.7 General directives and modules...10

1.8 Interactive mode and modules...10

November 1990 5-1

Modules
ProLog by BIM - 3.0 - Modules

- 2
November 1990

ProLog by BIM - 3.0 - Modules Modules - Introduction

1.1 Introduction

1.2 Directives

This chapter concerns the use of ProLog modules.

ProLog supports a module concept that makes it easy and natural to split a program in
separate components - called modules - which interact only through a set of predicates
the programmer has specified. In doing so, the programmer avoids inadvertent name
clashes and misuse of code, hides implementation details and enhances the readability
and maintainability of the programs.

The ProLog module concept is flat, static and name/arity based, i.e. modules cannot be
nested, the meaning of names is determined at compile-time and functors with the same
name, but different arity, can belong to different modules.

As the meaning of names is determined at compile-time, the handling of terms with
module qualification incurs no run-time overhead. The use of modules does not influ-
ence efficiency at all.

It is possible to program without modules, and programs already written without the use
of modules will remain executable without any adjustment.

module/1
module (_Modulename) .

argl : ground : atom

The module name is set to argl. The predicates declared after the module/1 directive
belong to the module argl (i.e. they are local to the module). The predicates textu-
ally before the directive are global (they belong to the global module whose name is
” , the atom of length zero). Predicates defined in a file without a module/1 directive,
are global. There can be, at most, one module/1 directive in a file.

For example:

global predicates

:-module(mod).

predicates local to mod

The same module/1 directive can appear in two different files. Since compilation is
on a per file basis, the locality of functors in one file cannot be influenced by the
other file. This principle is never violated.

November 1990 5-3

Modules - Directives ProLog by BIM - 3.0 - Modules

local/l
local JSfame / _Arity .

argl : ground : term

The local directive only makes sense when defined after a module directive. The di
rective is used:

• to declare that arg 1 belongs to the module : e.g. useful if there is no predicate
definition in the file and definitions of the predicate could be asserted at run-
time.

• to implement data hiding. The local/l directive for argl prevents argl from
being unified with functors with the same name/arity but belonging to a dif
ferent module.

• to redefine argl locally as a builtin predicate. For this purpose, the local/l
directive is even necessary! A warning is given by the compiler stating that
you are redefining a builtin predicate (unies s you use the ’-w’ flag).

Remark: the implied local directive
The directives op/3, index/2, mode/1 and dynamic/1 influence the module qualifi
cation of the functors they declare. If they occur after the module/1 directive a local/
1 directive for that functor is implied. In that case op(_prec,xfx,atom) must be con-
sidered as using the functor atom(_,_) and op(_prec,fx,atom) as using the functor
atom(_).

For example:

version without emq
:-module(mod).
:-local g /1 .
a(_l)bagof(_x,g(_x),_l).

version with emq
:-module(mod).
:-local g /1 .
a$mod(_l) bagof(_x,g$mod(_x),_l).

Compare with:

:-module(mod). :-module(mod).
a(_l)bagof(_x,g(_x),_l). a$mod(_l) bagof(_x,g$(_x),J).

Both columns are identical: the right column uses explicit module qualification
(emq).

5-4 November 1990

ProLog by BIM - 3.0 - Modules Modules - Directives

global/1
global JSfame / _Arity .

argl : ground : term

The global/1 directive is used to define argl as a global functor. It is only useful
when specified textually after a module/1 directive.

For example:

:-module(mod).
:-global a /1 .
a(_x) b(_x).
b(17).

import/l
;- import JSfame / _Arity from JAoduleName .

argl : ground ; term
The import/l directive is used to enable the use inside one module of predicates
from other modules. Argl is the functor that will be imported from arg2.

:-module(mod).
:-global a /1 .
a$(_x) b$mod(_x).
b$mod(17).

For example:

version without emq
:-module(mod).
:-import g/1 from bar .
a (_ x) g (_ x) .

Compare with:

:-module(mod).
a (_ x) g (_ x) .

version with emq
:-module(mod).
:-import g/1 from bar .
a$mod(_x) :- g$bar(_x).

:-module(mod).
a$mod(_x) :- g$(_x).

Without the import directive the occurrence of g/1 in the body of a$mod/l would
be taken as a call to a global predicate g/1 .

November 1990 5-5

Modules - Module builtin predicates ProLog by BIM - 3.0 - Modules

1.3 Module builtin
predicates

module/1
module (_ModName)

argl : any : atom

If instantiated, the current module becomes argl. If free, argl will be instantiated to
the name of the current module.

module/2
module (JPredicate, _ModName)

argl : partial: not integer, real or pointer
arg2 : any : atom

Unifies arg2 with the module qualification of the principal functor of argl.

For example :

?- module(a$one(_x),_y), write(_y).
one

module/3
module (jQualTerm, _ModName, JTerm)

argl : any
arg2 : any : atom
arg3 : any

Arg3 is the term constructed from argl by Stripping the module qualification from
the principal functor of argl, and unifying this qualification with arg2. If argl is
free, arg2 must be an atom and arg3 must be partially instantiated.

For example :

?- module(a$one(b$two), one, a(b$two)).
Yes

Succeeds.

5-6 November 1990

ProLog by BIM - 3.0 - Modules Modules - Module builtin predicates

mod_unif/2
modjunif (JTerml, Term2)

argl : any
arg2 : any

Unifies the 2 arguments, as if they had no module qualification at any Jevel (i.e as if
they were globals).

For example:

?- please(wq,on),mod_imif(a$one(_x), a$two(b$three)),
module(_x,_y).

x = b
_y = ”

Yes

writem/2
writem (_LogFileName, JTerm)
writem (_F ilePointer, JTerm)

argl : ground : atom or pointer
arg2 : any

As write/2, but all non-global names are written with their explicit module
qualification. (See chapter on I/O predicates)

writem/1
writem (JTerm)

argl : any

As writem/2, but on the current output stream. (See chapter on I/O predicates)

mlisting/1
mlisting (JModName)

argl : ground : atom

Writes on the current output stream all the predicate definitions that are local to the
module named argl.

November 1990 5-7

Modules - Explicit module qualification ProLog by BIM - 3.0 - Modules

1.4 Explicit module
qualification

1.5 Resolving module
qualification

Atoms and functors are fully identified by their name, arity and the module in which
they were defined. The explicit module qualification (emq) is the syntactic correct
way to express this. The global module has the name ” , the atom of length zero.
The other ProLog items - integers, reals, pointers and variables - have no module qual
ification.

For example :

atom$modA
functor$modA(_argl,atom$modA,globalatom$)
globalatom$
globaIfunctor$(_argl,atom$modA,globalatom$)
3.567

var

denote atom and functor/3 as defined in the module modA, and globalatom and
globalfunctor/3 as globals.

Explicit module qualification is only allowed with module names that appeared previ-
ously in a directive: the compiler will issue error messages if this rule is violated. An
import directive can be used.

The use of emq is not obligatory and is actually discouraged. If no module qualification
is used, the rules of the next section will be applied to determine to which module the
functor belongs. In case of ambiguity, explicit qualification must be used.

The rules for resolving the module qualification are (these apply at compile time):

• if foo/n is explicitely qualified with a module, then foo/n belongs to the mod
ule it is qualified with.

• if foo/n is not explicitely qualified but has a local declaration, an implied lo
cal declaration or a definition after the module declaration, foo/n is local.

• otherwise, if foo/n is imported from only one module, foo/n belongs to that
module.

• otherwise, if foo/n is not imported, foo/n is global.

• otherwise, an error against the module rules was made.

5-8 November 1990

ProLog by BIM - 3.0 - Modules Modules - General builtins and modules

1.6 General builtins and
modules

In case of ambiguities, explicit module qualifications must be used. Ambiguities arise
in the following cases:

• when the same functor is imported from different modules.

• when a functor is imported and has also a local declaration.

• when a functor is global and also local.

• when a functor is global and imported.

This paragraph explains the behavior of some general builtins when used inside a mod
ule. The most important rules are summarised below:

• The following predicates always create global atoms:

numbervars/3
numbervars/4

• The following predicates create global atoms in their first argument when
output:

ascii/2
name/2
atomtolist/2

• The predicate atomtolist/2 also creates global atoms in its second argument
when output.

• The predicate read/l interpretes functors locally if there already exists a lo
cal indication, otherwise functors are global.

• If a functor is derived from another functor, it inherits its module qualifica
tion.
Examples are =../2, functor/3, used with any i/o pattem:

• The predicates all_directives/0-l do not output module declarations.

• The write predicates write terms without module qualification except when
using p!ease(wm,on) and for the predicates writem/1-2.

November 1990 5-9

Modules - General directives and modules

1.7 General directives
and modules

1.8 Interactive mode and
modules

ProLog by BIM - 3.0 - Modules

The directives op/3, index/2, mode/1 and dynamic/1 influence the module qualifica
tion of the functors they declare as operator or as dynamic. If they occur after the mod
ule directive, the effect is that a local directive for that functor is implied.

The directive op(_prec,xfx,atom) must be considered as using the functor atom(_,_) and
op(_prec,fx,atom) as using the functor atom(_).

The directive dynamic(foo/n) (and foo/n index i and mode foo/n) must be considered
as using the functor foo/n, this is f o o (_ , . T h e mode and index declarations have
a similar effect as the dynamic declaration.

When a ProLog session starts (in the global module), none of the import, local or global
declarations appearing in the consulted files have effect.
If a predicate was loaded local to a module, then it cannot be called, unless an explicit
module qualification is used or unless you position yourself in the module.
In interactive mode explicit module qualification is always allowed.

Positioning within a module is done with the module/1 builtin. Typing in new defini
tions in no_querymode, will cause them to be added to the new module. The assert pred
icates will assert the term exactly as it is specified (i.e. terms without emq will always
be added to the global module)

For example:

?- module(modA).
Yes

In this case all predicates from modA are accessible without explicit qualifica
tion.

5-10 November 1990

EXTERNAL LANGUAGE INTERFACE

ProLog by BIM - 3.0 - External Language Interface Table of Contents

External Language Interface

Contents

1. Linking External Routines... 3
1.1 Incremental linking... 5
1.2 Linker directive... 6
1.3 Predicate mapping declarations.. 7
1.4 Interactive linking.. 10
1.5 Mapping inquiry.. 11
1.6 Objects and libraries.. 12

2. Calling External Routines from Prolog........................... 13
2.1 Parameter mapping declarations....................... 15
2.2 General parameter passing rules... 21
2.3 Parameter passing specification.. 23
2.4 Backtracking external predicates.. 47
2.5 Examples... 48

3. Calling Prolog Predicates from C 55
3.1 Access to Prolog predicates....................... 57
3.2 Calling Prolog predicates.. 58
3.3 Parameter mapping declarations... 61
3.4 General parameter passing rules... 64
3.5 Parameter passing specification.. 65

4. External Manipulation of Prolog Terms.......................... 75
4.1 Representation of terms.. 77

November 1990 i

Table of Contents ProLog by BIM - 3.0 - External Language Interface

4.2 Term decomposition... 79
4.3 Term construction... 81
4.4 Life time of terms... 83
4.5 Type conversion of simple terms... 84
4.6 Examples... 86

11 November 1990

ProLog by BIM - 3.0 - External Language Interface Introduction

Introduction

To be used effectively in an industrial environment products based on Prolog require a
flexible interface to different types of hardware and software components. ProLog pro-
vides access to the external world via a general external language interface. The interface
allows for easy communication with virtually every software package running on the
hardware platform on which the final application needs to be delivered.

Through this interface the ProLog programmer can invoke their application procedures
and functions written in a procedural language (C, Pascal, Fortran, Assembler). All the
usual data types as well as complex data structures can be communicated through this in
terface. Moreover, backtracking external functions can be defined, and ProLog predi
cates can be invoked from the external functions. This constitutes the most straightfor-
ward and versatile conneetion mechanism ever made available by a Prolog system.

To illustrate its versatility, the external language interface has been used to couple Pro-
Log with existing graphics, windowing and database packages. Among these are : Sun-
View, XView, Xlib, SunUnify, Ingres and Sybase, giving the application builder unre-
stricted access to graphics and windowing facilities as well as to the operational data in
relational databases.

November 1990 6-1

Introduction ProLog by BIM - 3.0 - External Language Interface

-2 November 1990

ProLog by BIM - 3.0 - External Language Interface Linking External Routines

ProLog by BIM - Reference Manual
External Language Interface
Chapter 1

Linking External Routines

1.1 Incremental linking..5

1.2 Linker directive...... ... 6

1.3 Predicate mapping declarations.. 7

1.4 Interactive linking..10

1.5 Mapping inquiry... 11

1.6 Objects and libraries..12

November 1990 6-3

Linking External Routines ProLog by BIM - 3.0 - Principal Components

-4
November 1990

ProLog by BIM - 3.0 - External Language Interface Linking External Routines - Incremental linking

1.1 Incremental linking
Before a routine written in another language than Prolog can be used from a Prolog pro
gram, it must be linked into the ProLog system and loaded. Using BIMlinker, one can
create a new, customized ProLog system that has the required external routines linked
in. Another method is to link these external routines incrementally in an already running
system. This is a more flexible method, but it introducés some run-time overhead each
time a set of routines must be linked and loaded. Incremental linking can be achieved by
Consulting a file or interactively from the top level of the running system. In both cases,
a number of declarations must be provided. First, a linker directive to indicate which ex
ternal routines are requested for and in which object files or libraries they can be found.
Second, for each external routine a declaration of its mapping to a Prolog predicate must
be given, including the declaration of the arguments.

The incremental linker opens the indicated object files and libraries to look up the re
quested routines. They are linked into the running system and their code is loaded in
memory. Finally, the external routines are associated with Prolog predicates, as de-
scribed in the declarations.

When linking routines from libraries, the code for the routines will only be loaded if it is
not yet in memory. If it has already been loaded, the external routine is immediatley as
sociated with the Prolog predicate.

November 1990 6-5

Linking External Routines - Linker directive ProLog by BIM - 3.0 - External Language Interface

1.2 Linker directive
The linker directives extern_load/2,3 teil the incremental linker of ProLog which exter
nal routines must be linked and which object files and libraries must be opened to find
them. In a file, this must be used as compiler directive, and interactively as a builtin pred
icate.

extern_load/3
externjtoad (Externais, jO bjects, _Size)

argl : ground : list of atom
arg2 : ground : list of atom
arg3 : ground : integer

The linker is informed that it must link the external routines whose names are list
ed in argl. And that these can be found by opening the object files and libraries
that are listed in arg2. This also gives arg3 as hint for the size of the code that must
be loaded.

The order of object file names and libraries in arg2 is important : all files are
opened in the same order as they appear in the list. The libraries must be at the
right place in the list, as the linker only retrieves those routines from a library that
are unresolved at the moment the library is opened.

The size arg3 is only a h int: the linker will allocate enough space to hold all the
code that must be loaded. When the size is given as 0, the linker will print out the
real size of the loaded code.

extern_load/2
externjtoad (_Externals, jObjects)

argl : ground : list of atom
arg2 : ground : list of atom

Same as extern_load/3 but without size hint.

6-6 November 1990

ProLog by BIM - 3.0 - External Language Interface Linking External Routines - Predicate mapping declarations

1.3 Predicate mapping
declarations

Each external routine can be mapped to one or more Prolog predicates or functions. This
is performed with the extern predicate/1,2,3 and externfunction/1,2,3 declarations.
In a file, these must be used as compiler directive, and interactively as a builtin predicate.

exter n lan gu age/1
extern_language (Language)

argl : ground : atom

The default language for following declarations is set to argl. It must be one of
the supported language identifiers (see <language> below).The default language
is C.

exter n_predicate/3
extern jpredicate (Language , JExternalName , JPredDecl)

argl : ground : atom
arg2 : ground : atom
arg3 : ground : term

The external routine with external name arg2, and written in language argl, is
mapped to a Prolog predicate as described in arg3.

The external name arg2 must be the same as in the external source code. If neces-
sary, the incremental linker will append pre- and postfixes to find the name in the
symbol tables.

The mapping description arg3 consists of a term with the same name and arity as
the Prolog predicate with which the external routine must be associated. lts argu
ments are the declarations for parameter passing. (See <pred_decl> below for a
precise syntax).

Any existing mapping for the indicated Prolog predicate, is overridden.

exter n_predicate/2
extern ̂ predicate (JLanguage , _PredDecl)
extern^predicate (_ExternalName , _PredDecl)

argl : ground : atom
arg2 : ground : term

Same as externjpredicate/3, but with either the language or external name argu
ment omitted.

If the language is omitted, it is assumed to be the default language, as set with
exter nlanguage/1.

November 1990 6-7

Linking External Routines - Predicate mapping declarations ProLog by BIM - 3.0 - External Language Interface

If the external name is omitted, it is assumed to be the same as the name of the
Prolog predicate, as defined in argl.

extern_predicate/l
extern jpredicate (_PredDecl)

argl : ground : term

Same as extern_predicate/3, but with the default language and with the external
name the same as the Prolog predicate name.

extern_function/3
extern_Junction (^Language, JExternalName > JFuncDecl)

argl : ground : atom
arg2 : ground : atom
arg3 : ground : term

The external routine with external name arg2 and written in language argl, is
mapped to a Prolog function as described in arg3.

The external name argl must be the same as in the external source code. If neces-
sary, the incremental linker will append pre- and postfixes to find the name in the
symbol tables.

The mapping description argl has the form term : type. The term has the same
name and arity as the Prolog function with which the external routine must be as
sociated. Its arguments are declarations for the parameter passing. The type indi
cates the type of the function result. (See <func_decl> below for a precise syntax).

Any existing mapping for the indicated Prolog function, is overridden.

extern_function/2
extern_function (JLanguage, JFuncDecl)
extern_function (_ExternalName , JFuncDecl)

argl : ground : atom
argl : ground : term

Same as extern_function/3, but with either the language or external name argu
ment omitted.

If the language is omitted, it is assumed to be the default language, as set with
exter nlanguage/1.

If the external name is omitted, it is assumed to be the same as the name of the
Prolog function, as defined in argl.

6-8 November 1990

ProLog by BIM - 3.0 - External Language Interface Linking External Routines - Predicate mapping declarations

exter n fu n ction /1
extern Junction (JFuncDecl)

argl : ground : term

Same as extern_function/3, but with the default language and with the external
name the same as the Prolog function name.

The syntax for the Prolog predicate and function declarations used in the mapping deca-
larations can be described as follows.

<pred decl> => <pro name> [(<arguments>)]

<func_decl> => <pro_name> [(<arguments>)] : <type>

<arguments> <argument> [, <arguments>]

<argument> => <type> [: <struct>] [: <mode>]

<type> => integer 1 short 1 long 1 real 1 float 1 double 1 pointer 1
atom 1 string 1 string : <string size> 1 bpterm 1 untyped

<struct> => array 1 list

<mode> i 1 o 1 m 1 r 1 e

<string size> => <integer>

<language> C 1 Fortran 1 Pascal

<ext name> <atom>

The <pro_name> is the name of the Prolog predicate or function the external routine
must be mapped to.

A declaration for an external predicate consists of a declaration for each of its arguments.
For an external function the result type must also be declared.

If no <struct> is given, the parameter is a simple argument.

If no <mode> is given, it defaults to i (input).

Argument declarations (type, structure and mode) are described in detail in the next
chapter.

November 1990 6-9

Linking External Routines - Interactive linking ProLog by BIM - 3.0 - External Language Interface

1.4 Interactive linking
For interactive incremental linking, some additional builtins are provided. Two for eras-
ing existing declarations and one to activate the incremental linker.

exter n_clear/0
extern_clear

All existing declarations and linker directives are erased.

Before giving declarations for a new linking phase, any existing declarations
should first be removed as these would otherwise be merged with new declara
tions.

exter n c le a r / l
extern clear (Predicate)
extern_clear (Function : _ReturnType)

argl : partial: term

All existing declarations matching argl are erased. The first form, a term with
principal functor the predicate name, only matches external predicate declara
tions. The second form, a term with principal functor a function name, and with a
return type (that can be free), only matches functions.

exter n_go/0
extern_go

The incremental linker is activated to link and load the external routines as de
scribed in previously given declarations.

After completion, the existing declarations remain effective.

6-10 November 1990

ProLog by BIM - 3.0 - External Language Interface Linking External Routines - Mapping inquiry

1.5 Mapping inquiry
Once an external routine is mapped to a Prolog predicate, the external name and the ad
dress of the external routine for this predicate can be retrieved.

extern_name_address/3
extern_namejaddress (Predicate, ExternalName , Address)

argl : partial: term
arg2 : free : atom
arg3 : free : pointer

Succeeds if the principal functor of argl is an external predicate.

The external name of the routine with which the Prolog predicate is associated, is
unified with arg2 and arg3 is instantiated to the address of the external routine.

November 1990 6-11

Linking External Routines - Objects and libraries ProLog by BIM - 3.0 - External Language Interface

1.6 Objects and
libraries

Object files must be compiled to a Standard Unix object file (.o file) before they can be
linked. To compile a file with base name externals to such an object file, named exter -
nals.o, one of the following commands can be used (depending on the source language).

Table : minimal compile commands

Language Compile command
C cc -c externals.c
Fortran f77 -c externals.f
Pascal pc -c externals.p

For Standard applications, the following libraries must be added at the end of the object
list in the extern_load/2,3 directive.

Table : Standard libraries to open

Language Libraries

C -lc
Fortran -1F77 -1177 -lc
Pascal -ipc -lm -lc

6-12 November 1990

ProLog by BIM - 3.0 - External Language Interface Calling External Routines from Prolog

ProLog by BIM - Reference Manual
External Language Interface
Chapter 2

Calling External Routines from Prolog

2.1 Parameter mapping declarations.. 15
Types... 15
C types.. 16
Fortran types...17
Pascal types... 17
Structures.. 18
Modes.. 18
Restrictions... 19

2.2 General parameter passing rules... 21

2.3 Parameter passing specification.. 23

2.4 Backtracking external predicates..47

November 1990 6-13

Calling External Routines from Prolog ProLog by BIM - 3.0 - External Language Interface

2.5 Examples.. 48
External function......................... 48
Predicate with external symbol table..49
Mutable parameter.. 50
Array parameters... 51
Backtracking external predicate.. 52

6-14 November 1990

ProLog by BIM - 3.0 - External Language Interface Calling External Routines from Prolog - Parameter mapping declarations

2.1 Parameter mapping
declarations

Types

When an external routine is mapped to a Prolog predicate or function, the mapping must
describe how parameters must be passed. This is accomplished by giving a declaration
for each argument in the external predicate or function declaration. Predicate and func
tion declarations are described in detail in the previous chapter. Here the argument dec
larations are specified.

An argument declaration has the following form:

<argument> => <type> [: <struct>] [: <mode>]

<type> integer 1 short 1 long 1 real 1 float 1 double 1 pointer 1
atom 1 string 1 string : <string_size> 1 bpterm 1 untyped

<struct> array 1 list

<mode> => i 1 o 1 m 1 r 1 e

<string size> <integer>

Types integer and real are language dependent default types that are mapped to either a
short or long corresponding type, depending on the language used.

Table : mapping of integer and real

Language Default type Mapped type
C integer long

real double
Fortran integer long

real float
Pascal integer long

real double

The special type untyped is mapped to a normal type depending on the type of the corre
sponding argument at the moment the external routine is called.

November 1990 6-15

Calling External Routines from Prolog - Parameter mapping declarations ProLog by BIM - 3.0 - External Language Interface

Table : mapping of untyped

Actual type Mapped type
integer integer
real real
pointer pointer
atom string or string : s

Correspondences between pre-defined types and data types in the external language are
listed in the following tables.

C types

Table : argument types and corresponding C data types

Type C Data type Description
integer int Long integer (4 byte)
long long Long integer (4 byte)
short short Short integer (2 byte)
real double Long real (8 byte)
double double Long real (8 byte)
float float Short real (4 byte)
pointer BP_Pointer Pointer (4 byte)
atom BP_Atom Atom identifier (internal form)
string BP_String String (null-terminated)
string : s BP_String String (fixed size)
bpterm BP_Term Term pointer (internal form)

Type string is a null-terminated character array. Type string : s is a fixed size array of s
characters. If s is 0, the size of the array is determined at the moment of calling the ex
ternal routine, and it is passed, followed by the array.

6-16 November 1990

ProLog by BIM - 3.0 - External Language Interface Calling External Routines from Prolog - Parameter mapping declarations

Fortran types

Pascal types

Table : argument types and corresponding Fortran data types

Type Fortran type Description
integer integer Long integer (4 byte)
long integer Long integer (4 byte)
short integer * 2 Short integer (2 byte)
real real Short real (4 byte)
double real * 8 Long real (8 byte)
float real Short real (4 byte)
pointer integer Pointer (4 byte)
atom integer Atom identifier (internal form)
string : s character * v String (fixed size)
bpterm integer Term pointer (intemal form)

There are no corresponding Fortran data types for pointer, atom and bpterm. These can
be represented in Fortran as integer.

Type string, which is a null-terminated character array, is not allowed for Fortran rou
tines. If s is 0 in type string : s, it is set to the length of the atom at the moment the external
routine is called.

Table : argument types and corresponding Pascal data types

Type Pascal type Description
integer integer Long integer (4 byte)
long integer Long integer (4 byte)
short -32768.32768 Short integer (2 byte)
real real Long real (8 byte)
double real Long real (8 byte)
float shortreal Short real (4 byte)
pointer Aany Pointer (4 byte)
atom integer Atom identifier (internal form)
string : s array of char String (fixed size)
bpterm integer Term pointer (internal form)

There are no corresponding Pascal data types for atom and bpterm. They can be repre
sented in Pascal as integer. Type pointer can be a Pascal pointer to any type.

Type string, which is a null-terminated character array, is not allowed for Pascal routines.
In type string : s, s must not be 0.

November 1990 6-17

Calling External Routines from Prolog - Parameter mapping declarations ProLog by BIM - 3.0 - External Language Interface

Structures

Modes

Parameters can be passed as simple arguments or in a structured form. The ProLog buil
tin interface provides two ways for structuring arguments : the list and the array struc
tures.

A list is used to map one single, composed Prolog parameter to a sequence (list) of con-
secutive external parameters. The Prolog parameter must be a Prolog list of simple pa
rameters. The external corresponding parameters are simple parameters, one for each el
ement of the Prolog list. For input as well as for output parameters, the Prolog argument
must be instantiated to a flat linear list. The number of elements in that list determines
the number of parameters that are passed between the predicate and the external routine.
It is the responsibility of the external routine to use or provide the right number of argu
ments. The list structure corresponds to the varargs feature of C (especially when com-
bined with untyped as type). The number of arguments of the external routine is variable
and can have different types.

An array maps one single, composed Prolog parameter to one single, composed external
parameter, structured as an array. The Prolog parameter can be either a Prolog list or a
Prolog term of simple parameters. The external corresponding parameter is an array. For
input as well as for output parameters, the Prolog argument must be instantiated to either
a flat linear list or a flat term. The number of elements in the external array is the same
as the number of elements in the list, or as the arity of the term. The elements of the ex
ternal array are mapped to the elements of the list or to the arguments of the term. If a
term is used in Prolog, its functor is ignored and may be chosen arbitrarily. An array
structured parameter must have at least one argument.

A mode determines in which direction the parameter is passed. The mode is abbreviated
to a single mnemonic letter. The following table gives the full names of the modes and
the corresponding mnemonics.

Table : mode mnemonics

Mnemonic Full name

i input
0 output
m mutable
r return
e evaluate

Mode r is used to retrieve the return value of an external routine. For every external pred
icate there can be at most one return parameter, and it must always be the first parameter.
Altematively, a return value of an external routine does not have to be retrieved. If there
is no return parameter declared, it will simply be ignored. A Prolog function, mapped to

6-18 November 1990

ProLog by BIM - 3.0 - External Language Interface Calling External Routines from Prolog - Parameter mapping declarations

an external function cannot have a return parameter since the return value of the external
function is mapped to the Prolog function result.

Mode m is a kind of in-out mode. This does not mean that it introducés destructive as
signment in Prolog. If the parameter was instantiated when calling the external routine,
and it is changed when exiting it, a failure will occur. The mutable mode is only signifi
cant for string type and array structured parameters. These are passed by reference. With
an output mode, a double reference is passed : the interface expects the external routine
to pass back a reference. With mode m, only one reference is passed, and the external rou
tine may change the object that is behind that reference. This corresponds to the typical
C passing of arrays. An array is passed to a routine by giving the address of the array.
The called routine can then change the contents of that array. The same applies to string
parameters, as they are arrays of characters.

Mode e is a variant of i. The actual argument is first evaluated (as the second argument
of is/2), and then passed with input mode. This is similar to the in-line expression evalu
ation that is denoted with ?/l.

Restrictions

There are some restrictions concerning the type correspondence between Prolog and ex
ternal data types :

• Prolog integers are limited to 29 bits of precision.

• External short reals (float) are mapped to Prolog reals in an unspecified way :
the additional decimal digits will not necessarily be 0.

Not all combinations of language, type, structure and mode are allowed. The following
restrictions hold :

• For external functions the argument modes must be i (input) or e (evaluate).

• For external functions the result type is restricted to numerical types (integer,
real and variants).

• Type string is not allowed in Fortran and Pascal.

• Type string : 0 is not allowed in Pascal.

• Type string : 0 in mode r (return) is not allowed.

• Mode e (evaluate) is only allowed with simple numerical types (integer, real
and variants).

• Mode o (output) is the same as m (mutable) in Fortran and Pascal.

• Structure array in mode r (return) is not allowed in Fortran.

• Structure list in mode r (return) is not allowed.

• Type bpterm is only allowed in mode i (input).

• Type untyped is only allowed in mode i (input).

November 1990 6-19

Calling External Routines from Prolog - Parameter mapping declarations ProLog by BIM - 3.0 - External Language Interface

• Type untyped in structure array is not allowed.

A schematic overview of non-allowed combinations is given below. The * stands for
anything.

Combinations that are not allowed for any language :

untyped : * : m
untyped : * : o
untyped : * : r
untyped : * : e
untyped : array : *

bpterm \ : m * : lis t: r pointer : e
bpterm : * : o string : 0 : * : r atom : e
bpterm : * : r string : e
bpterm : * : e * : lis t: e string : * : e
bpterm : array : * * : array : e

Combinations that are not allowed for Fortran and Pascal

Fortran Pascal

string : * : *
* : array : r

string : * : *
string : 0 : * : *

6-20 November 1990

ProLog by BIM - 3.0 - External Language Interface Calling External Routines from Prolog - General parameter passing rules

2.2 General parameter
passing rules

The global parameter passing rules are described by specifying the actions that are per
formed at call (when calling the external routine from Prolog), and at exit (when return-
ing from the external routine). These are given for each of the modes.

input - call
The actual parameter type is converted from the Prolog type to the external type
as described in the declaration. This converted value is passed to the external rou
tine following the parameter passing conventions for the language concerned.

input - exit
No actions are performed.

output - call
Enough memory is allocated to contain a value of the declared type, in the external
language. This memory zone is referenced by one level and this reference is
passed to the external routine.

output - exit
The reference that was passed to the external routine is dereferenced to retrieve
the value of the parameter. This value is type converted from the external type to
the corresponding Prolog type as declared. The resulting Prolog value is then uni
fied with the actual parameter of the Prolog predicate. This may result in instanti-
ation or simply success or failure.

mutable - call
The actual parameter is type converted from the Prolog type to the external type
as described in the declaration. If the actual parameter is not instantiated, a default
value is taken instead. If for the declared language, structure and type, the value
already has a reference, this reference is passed to the external routine. Otherwise,
an extra level of reference to the value is created and this reference is passed.

mutable - exit
The reference that was passed to the external routine is dereferenced to retrieve
the value of the parameter. This value is type converted from the external type to
the corresponding Prolog type as declared. The resulting Prolog value is then uni
fied with the actual parameter of the Prolog predicate. This may result in instanti-
ation or simply success or failure. A failure provokes a warning message.

return - call
No actions are performed.

return - exit
The function result of the external routine is type converted from the external type
to the corresponding Prolog type as declared. The resulting Prolog value is then
unified with the actual parameter of the Prolog predicate. This may result in in-
stantiation or simply success or failure.

November 1990 6-21

Calling External Routines from Prolog - General parameter passing rules ProLog by BIM - 3.0 - External Language Interface

evaluate - call
The actual parameter is evaluated as an expression (as if it were the second argu
ment of a call of is/2). The result of this evaluation is type converted from the Pro
log type to the external type as described in the declaration. This converted value
is passed to the external routine following the parameter passing conventions for
the language concerned.

evaluate - exit
No actions are performed.

6-22 November 1990

ProLog by BIM - 3.0 - External Language Interface Calling External Routines from Prolog - Parameter passing specification

2.3 Parameter passing
specification

Detailed specifications of parameter passing for each language, type and mode are given
by means of pictures, representing the parameter structures at call and exit time. A basic
memory cell of 4 bytes is represented by a 1/2 inch wide box.

Boxes with a thick border, represent the data that is actually passed as parameter (i.e. that
is pushed on the stack or in the input registers). A shaded box with thick border, repre
sents data that is actually passed as function result (returned in a register).

A ? in a box, means its value is undefined.

Shaded boxes at the exit, indicate zones that may or should have been modified by the
external routine.

Boxes that exist only at the exit, are zones that must be managed by the external language.
These must remain living at least during exit. If the external data is made static, there are
no problems involved. Ho wever, if it is allocated dynamically, special care has to be tak
en. It may not be deallocated when the external routine is left, but only when the Prolog
predicate is reentered. As this may introducé extra memory management efforts, these
parameter passing modes, combined with dynamic data structures should be avoided
when unnecessary. These cases are labeled with the remark ‘may be deallocated after
exif.

All memory zones that are managed by the external interface, remain in effect as long as
the call of the external routine is active.

The maximum length of an atom is indicated as MAX_ATOM, which is 16384.

In most cases, a string length is extended to get an even number of characters. This is in
dicated with s’ = even(s), which means that s’ = s if s is even, and s’ = s + 1 if s is odd.

November 1990 6-23

Calling External Routines from Prolog - Parameter passing specification ProLog by BIM - 3.0 - External Language Interface

C - Sim ple input

integer / long : i

call

short: i

call

f lo a t: i

call i

real / double : i

call |

poin ter: i

call

atom : i

call

]

]

string: i

call
3

The text zone is long enough to hold the actual string anu <x tciminating u oyte.

string : s : i (s > 0)

caU |---- — 1 ^ — |

s’ = even(s). The text zone is s’ bytes.
string : 0 : i

caU T.........~~1...> H s ------1
1 1 » ^ ~ÖI^ --------- ----—---------►

(s+1)
(s+1)’ = even(s+l). The text zone is (s+1)’ bytes. And s is set to the length of the
actual string.
Remark : There are two consecutive external arguments for this parameter.

6-24 November 1990

ProLog by BIM - 3.0 - External Language Interface Calling External Routines from Prolog - Parameter passing specification

C - Sim ple output
integer / long: o

call

exit

short: o
call

exit

flo a t: o
call

exit

1___ ;------1— H ? 1

»

1___ ;------É - H ? l

1___ _------1— H 1

c =

_l r 1

3 - H ________ 1

real / double : o
call | T » [

exit | 1 i»[

pointer: o
call r " 3 - K
exit L 3 - H '

atom : o
call j

exit L
string: o

call J“

exit i i »ri ►r oi
The text zone must be terminated with a 0 byte. It may be deallocated after exit.

string : s : o (s > 0)
call c
exit L

S
The whole length s of the text zone is considered as the resulting string. The te:
zone may be deallocated after exit.

string : 0 : o
call

exit

1 = — 1—H ? !

1 = ' 1 - r s i

I
** s

The external routine has to indicate the length of the text zone at exit. The text zc
may be deallocated after exit.

November 1990 6-25

Calling External Routines from Prolog - Parameter passing specification ProLog by BIM - 3.0 - External Language Interface

C - Simple mutable
integer / long : m

call [".. 1

exit I

short: m
call r

exit £

float : m
call j"

exit n

real / double : m
call |

exit [..

pointer: m
call |—1

exit L

atom : m
call r

exit r

H i

string: m
call i“

Default value : 0.

Default value : 0.

Default value : 0.

Default value : 0.

Default value : 0x0.

Default value : empty atom.

Default for s : MAX_ATOM.

S1
The text zone contains the actual string (default empty), terminated with a 0 byte.

exit

s2
The text zone must contain the string, terminated with a 0 byte. And s2 < Sj.

string : s : m(s > 0)
call || |

^ s 1 ^
s’ = even(s). The text zone contains the actual string (default empty), terminated
with a 0 byte, truncated to s’ bytes.

exit r .— i H ---------- 1

The whole length s of the text zone is considered as the resulting string.

6-26 November 1990

ProLog by BIM - 3.0 - External Language Interface Calling External Routines from Prolog - Parameter passing specification

string
call

exit

: 0 : m

Si Default for s : MAX__ATOM.

E 3
S1+1

The text zone contains the actual string (default empty), terminated with a 0 byte.

I I H S2 I
c 3-

s2
The external routine has to indicate the length of the text zone at exit. And s2 < Sj.
The whole length s2 of the text zone is considered as the resulting string.

November 1990 6-27

Calling External Routines from Prolog - Parameter passing specification ProLog by BIM - 3.0 - External Language Interface

C - Simple return
integer / long : r

exit | \

short: r
exit

float : r
exit |

real / double : r
exit l

pointer: r
exit

]

3

atom : r
exit

string: r
exit 31

The text zone must contain the string, terminated with a 0 byte. It may be deallo
cated after exit.

string : s : r (s > 0)

exit | I—H 1

The whole length s of the text zone is considered as the resulting string.
string : 0 : r

Not allowed.

6-28 November 1990

ProLog by BIM - 3.0 - External Language Interface Calling External Routines from Prolog - Parameter passing specification

C - A rray input

integer / long: array : i
call

£

short: array : i
call

£

float: array : i
call

real / double : array : i

string : array : i
call £ 3-

The text zones are long enough to hold the actual strings with a terminating 0 byte.
string : s : array : i (s > 0)

call

s’ = even(s). The text zones are s’ bytes long.
string : 0 : array : i

c a ü | " | §--------1

£

^ (s+iy ~~
(s+1)’ = even(s+l). The text zones are (s+1)’ bytes long. Size s is set to the length
of the longest actual string. The strings in the text zones are terminated with a 0
byte.

November 1990 6-29

Calling External Routines from Prolog - Parameter passing specification ProLog by BIM - 3.0 - External Language Interface

C - Array output
integer / lang : array : o

call | .1 ..► n? |

exit , -i_ h q .-►! ..

The array may be deallocated after exit.
short: array : o

caU i "m" '1 .-►n ? i

The array may be deallocated after exit.
floa t: array : o

call | |_►[9 |

exit | I |
The array may be deallocated after exit.

real / double : array : o

call | j ►r ~? I

e* it |1 ►r '1 ►! .

The array may be deallocated after exit.
pointer: array : o

call I ~ — I I

exit | | . | »I

The array may be deallocated after exit.
atom : array : o

call I ~l » p ? I

string
call

exit

The array may be deallocated after exit.
: array : o

—► 0
—► 0

The text zones must end on a 0 byte. The pointer array and text zones may be deal
located after exit.

6-30 November 1990

ProLog by BIM - 3.0 - External Language Interface Calling External Routines from Prolog - Parameter passing specification

string : s : array : o (s > 0)

call | I ^ | ~? 1

exit | " | :q. —► T
C

s
The whole length s of the text zones are considered as the resulting strings. The
pointer array and text zones may be deallocated after exit.

string : 0 : array : o
call

exit

1— 3 -H "?: .1

E=E
1̂ ̂ 1

=|-H s |
[

s
The external routine has to indicate the length of the text zones at exit. The pointer
array and text zones may be deallocated after exit.

November 1990 6-31

Calling External Routines from Prolog - Parameter passing specification ProLog by BIM - 3.0 - External Language Interface

C - Array mutable
integer / long : array .: m

(.(ML i I ^

• .exit | | ^

short: array : m
call 1___

exit 1— 1 ■-»

floa t: array :• m
call 1___

exit d ~ l -

Default value : 0.

Default value : 0.

Default value : 0.

real / double : array : m
call L

exit

Default value : 0.

pointer
call

exit

: array: m

1“ — i -

1 -----1—►

Default value : 0x0.

atom :
call

exit

array: m
Default value : empty atom.

string : array : m
call [g

c
The text zones are long enough to hold the actual strings (default emtpy) with a
terminating 0 byte.

The text zones must end on a 0 byte. The text zones may be deallocated after exit.
Remark : The text zones at exit are not necessarily the same as those at call.

6-32 November 1990

ProLog by BIM - 3.0 - External Language Interface Calling External Routines from Prolog - Parameter passing specification

string: s : array : m (s > 0)
call

exit

1---- "~=1 H —►
—►

------5T------►
= even(s). The text zones are s’ bytes long.

■ —►

The whole length s of the text zones are considered as the resulting strings. The
text zones may be deallocated after exit.
Remark : The text zones at exit are not necessarily the same as those at call.

string : 0 : array : m
call r

fa+ iy
(s+1)’ = even(s+l). The text zones are (s+1)’ bytes long. And s is set to the length
of the longest actual string. The strings in the text zones are terminated with a 0
byte.

exit
t

s2
The external routine has to indicate the length of the text zones at exit. The text
zones may be deallocated after exit.
Remark : The text zones at exit are not necessarily the same as those at call.

November 1990 6-33

Calling External Routines from Prolog - Parameter passing specification ProLog by BIM - 3.0 - External Language Interface

C - Array return
integer / long : array : r

exit C

The array may be deallocated after exit.
short: array : r

exit i
- B

The array may be deallocated after exit.
floa t: array : r

exit
L

The array may be deallocated after exit.
real / double : array : r

exit
L

The array may be deallocated after exit.
pointer : array : r

exit r— 11

The array may be deallocated after exit.
atom : array : r

exit ■—

The array may be deallocated after exit.
string : array : r

exit | — |_

The text zones must have a terminating 0 byte. The pointer array and text zones
may be deallocated after exit.

string : s : array : r (s > 0)
exit I“ ■

The whole length s of the text zones are considered as the resulting strings. The
pointer array and text zones may be deallocated after exit.

string : 0 : array : r
Not allowed.

6-34 November 1990

ProLog by BIM - 3.0 - External Language Interface Calling External Routines from Prolog - Parameter passing specification

Fortran - Simpte input
integer / long : i

call |

short: i
call L

real / floa t: i
call |

double : i
call I™

pointer: i
call r

atom : i
call £

string : s : i (s > 0)
call c

d

Default value : 0.

Default value : 0.

Default value : 0.

Default value : 0.

Default value : 0x0.

Default value : empty atom.

Default: empty string.

The text zone contains the actual string, terminated with a 0 byte, truncated to s
bytes.
Remark : There are two external arguments for this parameter. The second one is
at the end of the parameter list, following all regulär parameters.

string : 0 : i
call

L

n n
s+1

The text zone contains the actual string (default empty), terminated with a 0 byte.
Remark : There are two external arguments for this parameter. The second one is
at the end of the parameter list, following all regulär parameters.

November 1990 6-35

Calling External Routines from Prolog - Parameter passing specification ProLog by BIM - 3.0 - External Language Interface

Fortran - Simple mutable
integer / lang : m

call ™ | ►! ~ I Default value: 0.

exit r i - H 1
short: m

call [.. [^ |-----1 Default value : 0.

exit
real / floa t: m

Default value : 0.

I - I- H I
: m
r ""1 ^ i---------- i---------- 1 Default value : 0.

call

exit

double
call

exit

pointer: m
call

exit
d 3 - H H

1

1

------1

1

1 -̂ 1

____1

1

Default value : 0x0.

Default value : empty atom.

string : s : m (s > 0)
call E

E 1
The text zone contains the actual string (default empty), terminated with a 0 byte,
truncated to s bytes.

exit r

The whole length s of the text zone is considered as the resulting string.
Remark : There are two external arguments for this parameter. The second one is
at the end of the parameter list, following all regulär parameters.

string : 0 : m
call ,_______________ _ Default for s : MAX ATOM.

iv g
4------- s+1-------

r r .]
The text zone contains the actual string (default empty), terminated with a 0 byte.

exit r ~ ' I » r --------------------1

]
The whole length s of the text zone is considered as the resulting string.
Remark : There are two external arguments for this parameter. The second one is
at the end of the parameter list, following all regulär parameters.

6-36 November 1990

ProLog by BIM - 3.0 - External Language Interface Calling External Routines from Prolog - Parameter passing specification

Fortran - Simple return
integer / long : r

exit | |

short: r
exit __

real / float: r
exit | ï

double : r
exit L

pointer: r
exit

atom : r
exit

string : s : r (s> 0)
call

exit
n

i

1 5 i
The whole length s of the text zone is considered as the resulting string.
Remark : A Fortran return string is treated as a mutable string parameter.

string : 0 : r
Not allowed.

November 1990 6-37

Calling External Routines from Prolog - Parameter passing specification ProLog by BIM - 3.0 - External Language Interface

Fortran - Array input
integer / long : array : i

call | j_

short: array : i
call y

real / floa t: array : i
call [— 3-

double : array : i
call | [_

pointer: array : i
call L

atom : array : i
call L

Default value : 0.

Default value : 0.

Default value : 0.

Default value : 0.

Default value : 0x0.

Default value : empty atom.

string : s : array : i(s >0)
call L

m n
The text zones contain the actual strings (default empty), terminated with a 0 byte,
truncated to s bytes.

string : 0 : array : i
call | [_

m Z 3
The text zones contain the actual strings (default empty), terminated with a 0 byte,
truncated to s bytes. Where s is set to the length of the longest actual string.

6-38 November 1990

ProLog by BIM - 3.0 - External Language Interface Calling External Routines from Prolog - Parameter passing specification

Fortran - Array mutable
integer / long : array : m

Default value : 0.

Default value : 0.

Default value : 0.

Default value : 0.

Default value : 0x0.

Default value : empty atom.

November 1990 6-39

Calling External Routines from Prolog - Parameter passing specification ProLog by BIM - 3.0 - External Language Interface

string : s : array : m(s>0)
call E 1-

e
The text zones contain the actual strings (default empty), terminated with a 0 byte,
truncated to s bytes.

exit p— ï

r s — i
The whole length s of the text zones are considered as the resulting strings.
Remark : There are two external arguments for this parameter. The second one is
at the end of the parameter list, following all regulär parameters.

string : 0 : array : m
call E

E]
The text zones contain the actual strings (default empty), terminated with a 0 byte,
truncated to s bytes. Where s is set to the length of the longest actual string.

exit E

E 1
The whole length s of the text zones are considered as the resulting strings.
Remark : There are two external arguments for this parameter. The second one is
at the end of the parameter list, following all regulär parameters.

6-40 November 1990

ProLog by BIM - 3.0 - External Language Interface Calling External Routines from Prolog - Parameter passing specification

P asca l - S im p le in p u t

integer / long: i
call

short: i
call

float: i
call

real / double : i
call E

pointer: i
call

atom : i
call

string : s : i (s > 0)
call

L

s’ = even(s). The text zone is s’ bytes.

November 1990 6-41

Calling External Routines from Prolog - Parameter passing specification ProLog by BIM - 3.0 - External Language Interface

P a sca l - S im p le m u tab le

integer / long : m

3 - H 1 Default value : 0.

3 - H .n .

short: m

3 — a Default value : 0.

3 — □

float : m
call jj 3 - H _ □ Default value : 0.

exit 1____ 3 - H ______3

real / double : m
call ||

exit J

pointer: m
call [~

exit E

atom : m
call r

exit L

Default value : 0.

Default value : 0x0.

-H Default value : empty atom.

string : s : m (s > 0)
call |" ~ 3-

s’ = even(s). The text zone contains the actual string (default empty), terminated
with a 0 byte, truncated to s’ bytes.

exit

The whole length s of the text zone is considered as the resulting string.

6-42 November 1990

ProLog by BIM - 3.0 - External Language Interface Calling External Routines from Prolog - Parameter passing specification

P a sca l - S im p le re turn

integer / long : r
exit I

short: r
exit

float : r
exit

real / double : r
exit I

pointer: r
exit p

atom : r
exit

string : s : r (s > 0)
exit

s’ = even(s). The whole length s of the text zone is considered as the resulting
string. The text zone may be deallocated after exit.

November 1990 6-43

Calling External Routines from Prolog - Parameter passing specification ProLog by BIM - 3.0 - External Language Interface

P a sca l - A rra y in p u t

integer / long : array : i
call

short: array : i
call □

floa t: array : i
call

real / double : array : i
call

pointer : array : i
call

atom : array : i
call

string : s : array : i (s > 0)
call

s^
s’ - even(s). The text zones are exactly T bytes long.

6-44 November 1990

ProLog by BIM - 3.0 - External Language Interface Calling External Routines from Prolog - Parameter passing specification

P a sca l - A rra y m u tab le

integer / long : array : m
call | "" 1 _►“

exit c 3-

short: array : m
call j

exit

— 1

E

float: array: m
call | 1 ""

exit 1 1 *1

Default value : 0.

Default value : 0.

Default value : 0.

real / double : array : m
call

exit

Default value : 0.

pointer
call

exit

array : m

i i -

1------------ 1 *

atom :
call

exit

array: m

string : s : array : m (s >0)
call | "" | ------

Default value : 0x0.

Default value : empty atom.

exit
s’ = even(s). The text zones are s’ bytes long.

i — r ►

sf
The whole length s of the text zones are considered as the resulting strings.

November 1990 6-45

Calling External Routines from Prolog - Parameter passing specification ProLog by BIM - 3.0 - External Language Interface

P a sca l - A rra y re tu rn

integer / long : array : r
exit L

The array may be deallocated after exit.
short: array : r

exit ■— i -
■ B

The array may be deallocated after exit.
floa t: array : r

exit r 3 —►

The array may be deallocated after exit.
real / double : array : r

exit
L

The array may be deallocated after exit.
pointer : array : r

exit r
The array may be deallocated after exit.

atom : array : r
exit 1 1 ^

The array may be deallocated after exit.
string : s : array : r (s > 0)

s
s’ = even(s). The whole length s of the text zones are considered as the resulting
strings. The array may be deallocated after exit.

6-46 November 1990

ProLog by BIM - 3.0 - External Language Interface Calling External Routines from Prolog - Backtracking external predicates

2.4 Backtracking
external predicates

The ProLog external language interface provides facilities for simulating backtracking
external predicates. Such predicates behave in a similar way as normal non-deterministic
Prolog predicates. For this purpose, a number of builtin predicates and external builtin
routines are provided.

mark_repeat/2
markjrepeat (_Info , JChoicePointld)

argl : partial: term
arg2 : ground : atom

This predicate succeeds repeatedly on backtracking. The choicepoint identifier
arg2 is a global identification name for the choicepoint that Controls this repeat.
The information argl is associated with this choicepoint, and is user definable.

recent_mrepeat/2
recent mrepeat (_Info, JChoicePointld)

argl : any : term
arg2 : ground : atom

The information associated with the most recent, still active choicepoint with
identifier arg2, is unified with argl. If no such choicepoint exists, this predicate
fails.

The external routines for simulating backtracking are :

B IM P ro lo g rm m rep ea t (choice_point_id)
BP_String choice_point_id;

The most recent choicepoint with identifier choice_point id is removed, by cutting it
away.

BIM_Prolog_rm_all_mrepeat (choice_point_id)
BP_String choice__point_id;

All active choicepoints with identifier choice_point_id are removed, by cutting them
away.

A common method for simulating backtracking external predicates with these predicates
and routines is the following. An external routine is called to set up an iterator externally.
In Prolog, a choicepoint is created with mark_repeat/2. This will be used as the Prolog
iteration controller. The main external routine is called to generate the next solution in
the iterator. When the last solution is found, the external routine must cut away the
choicepoint. Another fail in Prolog will then no longer retry the iteration.

November 1990 6-47

Calling External Routines from Prolog - Examples ProLog by BIM - 3.0 - External Language Interface

The recent_mrepeat/2 builtin is useful for doing resource management, like memory
management, in case a Prolog cut would have removed external choicepoints.

2.5 Examples

E x te r n a l fu n c tio n

An external function add() is defined and mapped to a Prolog function add/2 which takes
two real arguments, adds them and returns the real result. The external definition is given
in the C file add.c.

The C definition, in add.c, is quite simple :

double add (x , y)
double x, y;
{

return (x + y);

This file must be compiled with :

cc -c add.c

Prolog declarations :

extern_load ([add] , [‘add.o’]).
extern_function (add (real: e , real: e) : real) .

The arguments are declared to be of type evaluate, so that we can use expressions as ar
guments of the function.

To evaluate the expression

2 * add (sin (_ A), add (1 , _B)) + _B

and assign the result to _X, the following Prolog goal can be executed :

_X is 2 * add (sin (_A), add (1.0 , real (_B))) + _B

The explicit type conversion of _B to real is necessary as the interface does not perform
implicit type conversions of the arguments.

6-48 November 1990

ProLog by BIM - 3.0 - External Language Interface Calling External Routines from Prolog - Examples

P red ica te w ith ex tern a l
sym b o l table

Suppose we have an existing library that contains a routine that returns an enumeration
type value (e.g. an error status). Enumeration types in C are implemented as integers. To
make this transparent to the Prolog user, an external routine is added between this library
routine and the Prolog predicate. This routine looks up the integer code in a table and re
turns an atom representing the symbolic enumeration value.

A definition of the enumeration type and the header of the library routine might be some
thing like :

typedef enum {
NoError,
SyntaxError,

} ErrorStatus;

ErrorStatus get_error_status ();

The external table with the translation from enumeration value to symbolic name, must
be initialized:

error_table [NoError] = BIM_Prolog_string_to_atom (“NoError”);
errorjable [SyntaxError] = BIM_Prolog_string_to_atom (“SyntaxError”);

The extra external routine, placed between the Prolog predicate and the library routine
and defined in file interface.c, becomes then :

BP_Atom Iget_error_status ()
{

return (errorjable [get_error_status () 1);

To use this in Prolog, the following declarations are required :

externjoad ([Iget_error_status] , [‘interface.o’]) .
extern j>redicate (Iget_error_status , get_error_status (atom : r)) .

Retrieving the error status is done as follows :

?- get_error_status (_Status) .
_Status = NoError

November 1990 6-49

Calling External Routines from Prolog - Examples ProLog by BIM - 3.0 - External Language Interface

The extra external routine is named after the library routine, but with a suffix I, so that
the Prolog predicate can have exactly the same name as the library routine, making the
interface transparent to the Prolog user.

M u ta b le p a ra m e ter

As an illustration of a mutable parameter, consider the C function strcpy() which copies
a string.

The C code for this function, in file strcpy.c is :

strcpy (o , i)
char * o, * i;
{

while (*o++ = *i++) ;

The characters from the input array i are copied in the output array o. This must be large
enough to hold the string, and the terminating null byte.

The Prolog declarations for this external predicate are :

extern_load ([strcpy] , [‘strcpy.o’]) .
extern_predicate (strcpy (string : m , string : i)) .

As first argument, a mutable string is declared. As a result, the argument will be passed
with no extra reference, as would be the case for an output mode. Calling the predicate
with a free first argument, will pass the external routine a pointer to a character array that
is big enough to hold the largest possible Prolog atom.

?- strcpy (_String , Tnput String’).
_String = Input String

6-50 November 1990

ProLog by BIM - 3.0 - External Language Interface Calling External Routines from Prolog - Examples

A rra y p a ram eters

An external predicate is defined that calculates the vector product of two vectors with real
coordinates.

In C, the code for the routine vectorjproduct(), in file vee tor. c is :

double vector_product (x , y , n)
double * x, * y;
int n;
{

int count;
double product;

product = 0.0;
count = n;
while (count-) product += (*x++) * (*y++);
return (product);

}

An extra argument indicates the sizes of the vectors, as this cannot be determined from
the vector itself.

The Prolog declarations to use this, are :

extern_load ([vector_product] , [4vector.o’]) .
extern_predicate (vector_product (real:r , real:array:i, real:array:i, integeni)).

A possible call :

?- vector_product (_P , v (1.0,2.0) , v (3.0 ,4 .0) , 2) .
_P= 11.0

The external predicate is called with two terms of arity 2. The number of elements, 2 is
also passed.

November 1990 6-51

Calling External Routines from Prolog - Examples ProLog by BIM - 3.0 - External Language Interface

B a c k tra c k in g ex te rn a l
pred ica te

The next example illustrates the general framework for backtracking external predicates
with a simple iterator over an external table. In the external program, a table with names
is managed. The interface to this program provides predicates for iterating from Prolog
over the table, to retrieve all entries that match a given pattern.

C code for the iterator routines, stored in a file iterator.c :

#define TABLEJTERATOR “TABLEJTERATOR”

typedef struct {
char pattern [MAXJPATTERN];
int index;

} IteratorRecord, * Iterator;

int table_iterate_start (pattern , iterator , identifier)
char * pattern;
Iterator * iterator;
char ** identifier;
{

Iterator iter;

iter = (Iterator) malloc (sizeof (IteratorRecord));
if (! iter) return (1);

iter -> index = 0;
strcpy (iter -> pattern , pattern);
* iterator = iter;
* identifier = TABLEJTERATOR;
return (0) ;

int table_iterate_next (iterator , name)
Iterator iterator;
char ** name;
{

int index;

index = match_pattern_from (iterator -> pattern , iterator -> index);
if (index)
{

*name = get_table_jiame(index);
iterator -> index = index;
return (0);

else

BIM_Prolog_rm__mrepeat (TABLEJTERATOR);
free (iterator);

6-52 November 1990

ProLog by BIM - 3.0 - External Language Interface Calling External Routines from Prolog - Examples

return (1);

An iterator externally consists of a record that holds the current index in the table and the
pattern that must be matched for this iterator. Each new invocation of an iterator allocates
a new iterator record. The address of this record is returned as choicepoint related infor
mation. It must be used to retrieve the next solution. When an iterator is invoked, with
table_iterate_start(), a choicepoint identifier is also passed to the calling Prolog predi
cate. In general, the Prolog part as well as the external part can decide on the identifier.
If the allocation of a new iterator is impossible, the routine returns the error code 1, oth
erwise 0.

The next solution routine table iterate_next() searches for the next table entry that
matches the pattern in the specified iterator. If one is found, the iterator is adapted, and
the name is returned. The function result is 0 in this case. If no matching entry can be
found anymore, the most recent table iterator choicepoint is removed, the iterator is deal
located and the function returns the error code 1.

In Prolog, the following declarations must be provided together with some wrapping
code that uses the external routines to make a real Prolog backtracking predicate
table _pattern_match/2.

extern_load ([table_iterate_start, table_iterate_next] , [4iterator.o’]) .
extern_predicate (table_iterate_start (integer:r, stringii, pointeno , string:o)) .

:- extern_predicate (table_iterate_next (integer:r , pointer:i, string:o)) .

table_pattem_match (_Pattern , _Match) :-
table_iterate_start (0 , _Pattern , Iterator , _Identifier),
mark_repeat (_Iterator , Identifier),
table_iterate_next (0 , „Iterator , _Match) .

Calling this predicate with first argument instantiated to a pattern, will return all match
ing names in the second argument, one at a time by backtracking.

November 1990 6-53

Calling External Routines from Prolog - Examples ProLog by BIM - 3.0 - External Language Interface

6-54 November 1990

ProLog by BIM - 3.0 - External Language Interface Calling Prolog Predicates from C

ProLog by BIM - Reference Manual
External Language Interface
Chapter 3

Calling Prolog Predicates from C

3.1 Access to Prolog predicates.. 57

3.2 Calling Prolog predicates.. 58
Single solution call (deternimistic call)...................................... 5 8
Multiple solution call (iterative call)...59
Printing error messages.. 60

3.3 Parameter mapping declarations...61
Types.. 61
Structures... 62
Modes.. 62
Restrictions.. 63

3.4 General parameter passing rules...64

3.5 Parameter passing specification..65

November 1990 6-55

Calling Prolog Predicates from C ProLog by BIM - 3.0 - External Language Interface

6-56 November 1990

ProLog by BIM - 3.0 - External Language Interface Calling Prolog Predicates from C - Access to Prolog predicates

3.1 Access to Prolog
predicates

It is possible to call predicates that are defined in ProLog from an external routine. To
do this, the predicate’s name and arity must be known. With this information, the predi
cate’s handle can be obtained. The predicate can be called using this handle and passing
the desired parameters.

The following functions can be used to retrieve the handle of a predicate.

BP_Atom BIM_Prolog_string_to_atom (protect, string)
int protect;
BP_String string;

The null-terminated character array string is converted to a ProLog atom,which is re
turned in its internal representation. That atom is necessary to retrieve the predicate’s
handle. The protect flag may be FALSE for this purpose, as the atom is only needed to
retrieve the handle and may be destroyed afterwards.

BPJFunctor BIM_Prolog_get_predicate (name , arity)
BP_Atom name;
int arity;

The handle for the predicate with name name and arity arity, is returned. The name ar
gument must be an atom (in its internal representation). If the predicate does not exist at
the moment of the call, its future handle is returned. So, it is perfectly possible to search
the handle of a predicate that is not yet defined. It must only exist at the moment it is
called.

To inquire the name and arity from a predicate handle, the following function can be
used.

int B I M P r o lo g g e t n a m e a r i t y (functor , atom , arity)
BP_Functor functor;
BP_Atom * atom;
int * arity;

The name of predicate handle functor is stored in atom, and its arity in arity.

If functor is not a legal functor, an error message is issued and the function returns
FALSE. Otherwise it returns TRUE.

November 1990 6-57

Calling Prolog Predicates from C - Calling Prolog predicates ProLog by BIM - 3.0 - External Language Interface

3.2 Calling Prolog
predicates

There are two ways of calling Prolog predicates: one way returns only one solution; the
other returns multiple Solutions. They are used, respectively, for deterministic and non-
deterministie predicates. Nevertheless, searching for only one solution of a non-deter-
ministic predicate and, conversely, searching for different Solutions of a deterministic
predicate is allowed.

S in g le so lu tion ca ll
(determ in istic ca ll)

The following function is used to find one single solution of a predicate with a known
handle:

int BIM Prolog call predicate (functor { , spec [, size] [, value] })
BP_Functor functor;
int spec;
int size;
union value;

The Prolog predicate with handle functor is called, and its first solution is retrieved. The
function returns TRUE if the call succeeded and a solution is retrieved. It returns FALSE
if an error occurred or if there is no solution.

For each argument of the predicate a parameter descriptor must be passed to this routine.
This consists of a sequence of up to three arguments, including a specifier spec, in certain
cases a size size and in most cases a value value. The specifier is a combination of mode,
structure and type specification for the argument. The optional size is a further specifica
tion for certain types of parameter passing mode. (See section Parameter mapping dec
larations for detailed information on the parameter descriptor).

After calling the predicate and copying the output argument values, an implicit cut and
fail is performed. As a result, all unifications that were done during this call, are undone.
This is particularly important for BP T BPTERM arguments : these will never be further
instantiated with this routine. To avoid this behavior, an iterative call should be made in-
stead of a deterministic one.

6-58 November 1990

ProLog by BIM - 3.0 - External Language Interface Calling Prolog Predicates from C - Calling Prolog predicates

M u ltip le so lu tion ca ll
(itera tive call)

If more than one solution of a predicate is required, an iterator must be used. There are
three predicates for this purpose : one to set up the iterator, one to perform a next iteration
step, and one to terminate the iteration.

int BIMJPrologsetupcall (functor f , spec , [size] [, value] })
BP _Functor functor;
int spec;
int size;
union value;

An iterator is set up for calling the predicate with handle functor, and for iterating over
its Solutions.

If functor is not a legal functor, or if it was impossible to set up another iterator, or if the
argument descriptions were erroneous, an error message is issued and the function re
turns FALSE. Otherwise it returns TRUE.

This function is analoguous to BIM_Prolog_call_predicate() except that it does not call
the predicate and thus, no solution is retrieved.

A new iterator may be set up while other iterators are still active.

One has to be careful that the locations for output arguments, whose addresses are passed
as value for the argument, remain in effect throughout the whole iteration cycle over the
predicate. In particular, they should not be addresses of local variables in a routine that
is left after the iterator has been set up.

int BIM Prolog next call ()

The next solution of the most recently created iterator is retrieved. The function returns
TRUE if a new solution was found, and FALSE if no more Solutions could be found.

Before searching the next solution, an implicit fail is performed, thereby undoing all uni-
fications since the previous iteration. Unlike the routine BIM_Prolog_call_predicate(),
no cut and fail is performed after the solution is found. This means a BP T BPTERM
argument can be further instantiated during an iteration.

If no iterator is active, an error message is issued and the function returns FALSE.

int BIM Prolog terminate call ()

The most recently created iterator is terminated and destroyed.

An implicit cut and fail is performed, undoing all unifications since the iterator was set
up.

November 1990 6-59

Calling Prolog Predicates from C - Calling Prolog predicates ProLog by BIM - 3.0 - External Language Interface

P rin tin g error m essages

When an external routine must give an error message, it can be printed directly on the
error stream {stderr), but it can also go via the ProLog error printing routine. This way,
it will be compatible with the rest of the application where it concerns the warning switch
and the redirection of the error stream.

BIMPro loger ro rmessage (message)
char * message;

The error message with text message is rendered on the current error stream, if the warn
ing switch is on.

6-60 November 1990

ProLog by BIM - 3.0 - External Language Interface Calling Prolog Predicates from C - Parameter mapping declarations

3.3 Parameter mapping
declarations

For each argument of a Prolog predicate called from an external routine, a parameter de
scriptor must be passed from the external program to the interface. This descriptor is a
sequence, consisting of a specifier, in certain cases a size and in most cases a value. A
specifier is an integer that has information about type, structure and mode of the param
eter encoded. The size argument is only required (and allowed) for certain combinations
of type and structure. The value argument is either the value of the parameter for a input,
or the address of an external variable for an output parameter.

The specifier is composed of three values, one for the mode, one for the structure and one
for the type, by or’ing them together or taking their sum. The values must be chosen from
the tables below. To use these values, the external interface definition file BPextern.h
must be included.

Types

A table of available type specifiers is given below together with the corresponding C data
type.

Table : argument types and corresponding C data types

Type C Data type Description
BP_T_INTEGER int Long integer (4 byte)
BP_T_LONG long Long integer (4 byte)
BP_T_SHORT short Short integer (2 byte)
BP_T_REAL double Long real (8 byte)
BP_T_DOUBLE double Long real (8 byte)
BP_T_FLOAT float Short real (4 byte)
B P_T_POINTER BP_Pointer Pointer (4 byte)
BP_T_ATOM BP_Atom Atom identifier (internal form)
b p t s t r i n g BP_String String (null-terminated)
BP„T STRINGS BP String String (fixed size)
BP_T_BPTERM BP_Term Term pointer (internal form)
BPJMJNTYPED Run-time actual type
BP_T_VOID Ignore predicate argument

Type BPJTJSTRING is a null-terminated character array. Type BP T STRINGS is a
fixed size array of characters. The size specifier determines the number of characters in
the string.

For BP_T UNTYPED the type of the parameter is determined by the actual Prolog pa
rameter. This type can only be used for output parameters because it is impossible to de
termine the type of an external variable at run-time.

November 1990 6-61

Calling Prolog Predicates from C - Parameter mapping declarations ProLog by BIM - 3.0 - External Language Interface

With BP T VOID it is possible to ignore a parameter of a Prolog predicate. The predi
cate is called with a void variable at the corresponding argument place. And nothing is
retrieved from it after the call returns.

S tru c tu res

There are two structure specifiers : BP S SIMPLE and BP S ARRAY.

A BP S SIMPLE parameter is an unstructured simple argument.

A BP_S ARRAY parameter is at the external side, an array, and at the Prolog side a Pro
log list or a flat term. The size specifier indicates the number of elements in the array. In
general, if the array is passed from the external routine to Prolog, the size must also be
passed in the same direction, and if the array is passed from Prolog back to the external
routine, the size will also be passed back from Prolog.

M odes

Parameters can be passed in three different modes between an external routine and a Pro
log predicate : BP J A J N , BP J A OUT and BPJA MUTE.

Input mode BP M IN is used to pass a value from the external routine to the Prolog pred
icate.

An output parameter (BP M OUT) is used to retrieve a value from a Prolog predicate.
The value part of the parameter descriptor must be the address of the external variable
that will receive the value of the corresponding Prolog argument.

The mutable mode BP M MUTE is a variant of the output mode. It is also used to return
a value from a Prolog predicate. The value part of the parameter descriptor must be the
address of the external variable that will receive the value of the corresponding Prolog
argument.

The difference between output and mutable is that for output, the external interface will
provide the necessary memory for the resulting data, while for mutable parameters, it is
the responsibilty of the external routine to provide all necessary space. As a consequence,
an output parameter has one level more of indirection for complex parameters, like
strings and arrays.

6-62 November 1990

ProLog by BIM - 3.0 - External Language Interface Calling Prolog Predicates from C - Parameter mapping declarations

R estric tions

Not all combinations of type, structure and mode are allowed. The following restrictions
hold :

• Type BP T STRINGS is not allowed in structure BP S ARRAY.

• Type BP T UNTYPED is not allowed in mode BP M IN.

• Type BP T BPTERM is the same in all modes, and has the effect of mode
B P M J N .

• Type BP TJ/OID is the same in all modes, and has the effect of mode
B P M J N .

OverView of combinations that are not allowed :

BP JT STRINGS 1 BP S ARRAY 1 *
BPJT UNTYPED *\BP M IN

November 1990 6-63

Calling Prolog Predicates from C - General parameter passing rules ProLog by BIM - 3.0 - External Language Interface

3.4 General parameter
passing rules

The global parameter passing rules are described by specifying the actions that are per
formed at call (when going from the external routine to Prolog), and at exit (when coming
back from Prolog to the external routine). These are given for each of the modes.

input - call
The actual parameter is type converted from the external type to the Prolog type
as described in the specifier. This converted value is passed to the Prolog predi
cate.

input - exit
No actions are performed.

output - call
No actions are performed.

output - exit
The actual Prolog parameter value is type converted from the Prolog type to the
external type as described in the specifier. That value is stored at the location
whose address was given in the parameter descriptor.

mutable - call
No actions are performed.

mutable - exit
The actual Prolog parameter value is type converted from the Prolog type to the
external type as described in the specifier. That value is stored at the location
whose address was given in the parameter descriptor.

6-64 November 1990

ProLog by BIM - 3.0 - External Language Interface Calling Prolog Predicates from C - Parameter passing specification

3.5 Parameter passing
specification

Detailed specifications of parameter passing for each language, type and mode are given
by means of pictures, representing the parameter structures at call and exit time. A basic
memory cell of 4 bytes is represented by a 1/2 inch wide box.

Boxes with a thick border, represent the data that is actually passed as parameter (i.e. that
is pushed on the stack or in the output registers).

A ? in a box, means its value is undefined.

Shaded boxes at the exit, indicate zones that may have been modified by the Prolog pred
icate.

Boxes that exist only at the exit, are zones that are managed by the external language in
terface. There are two types of such zones : short-term and long-term memory. The
short-term zones contain valid data only as long as control stays in the external routines.
From the moment control goes back to ProLog , in whichever way, these zones may be
destroyed or overwritten. As a result, if the external routine needs the data for a longer
period, it has to copy it. These short-term zones should not be overwritten by the external
routines. They are indicated as ‘short-term zone’. The long-term memory zones can be
used freely by the external routines, and should be deallocated when no longer needed.
ProLog will not deallocate these zones automatically.

November 1990 6-65

Calling Prolog Predicates from C - Parameter passing specification ProLog by BIM - 3.0 - External Language Interface

S im p le in p u t

BPJ'JNTEGER / BPJTJLONG I BP S_SIMPLE I BP M JN
call

BPJ'JSHOR T I BP_S SIMPLE I BP_MJN
call

BPJ'JFLOAT I BP_S_SIMPLE I BP_MJN
call

t]
BP T REAL / BP_T_DO ÜBLE I BP_S_SIMPLE I BP_MJN

call

BP J ' POINTER I BP_S_SIMPLE I BP_MJN
call

BP_T_ATOM I BP_S_SIMPLE I BPJS1JN
call

BP JJSTRING I BP_S_SIMPLE I BP_MJN
call a

me text zone must nota tne actuai string anci a lerrnmating u oyte.
BP T_S TRINGS / BP_S_SIMPLE I BPJMLJN

call | 1 g" I

The first s bytes of the text zone are considered to be the string.
Remark : This parameter has a size descriptor argument, immediately preceding
the value argument.

6 - 6 6 November 1990

ProLog by BIM - 3.0 - External Language Interface Calling Prolog Predicates from C - Parameter passing specification

S im p le o u tp u t

BP_TJNTEGER / BP_T_LONG I BP_S_SIMPLE I BPJMjOUT

call | I H ? 1

exit | I 1

BP_T SHORT I BP_S_SIMPLE I BPJMjOUT

caU i--------- 1 ►m
exit | | ►! |

BPJTJFLOAT I BP_S_SIMPLE I BPJMjOUT

call 1 | —?

exit | | g»|----

BP_T_REAL / BPJT_DOUBLE I BP_S_SIMPLE I BP_M_OUT

cal1 i i ».[? i i

exit

BP TJPOINTER I BP S SIMPLE I BPJMJOUT
call [..... [— 9------1

cxzY |.... " -----------1

BP_T_ATOM I BP_S_SIMPLE I BPJMJOUT

call I - I — -------1

ew'r r" 11 '1 ■»!------------ i

BP_T_STRING I BP_S_SIMPLE I BP_M_OUT

call f ' 1 ..H ~ T

The text zone contains the string terminated with a 0 byte. It is short-term memory
and should not be overwritten.

BP t_STRINGS / BP_S_SIMPLE I BPJMjOUT

call [I ►! ? |
r — — i

-----s77-----^
The text zone contains the string terminated with a 0 byte. It is short-term memory
and should not be overwritten.
Remark : This parameter has a size descriptor argument, immediately preceding
the value argument.

November 1990 6-67

Calling Prolog Predicates from C - Parameter passing specification ProLog by BIM - 3.0 - External Language Interface

S im p le m u ta b le
BPJTJNTEGER / B P T L O N G I BP_S_SIMPLE I BP_M_MUTE

call L 3-

exit L
BP_T_SHORT I BP_S_SIMPLE I BP_M_MUTE

call r ■ -----1

exit

FLOAT I BP_S SIMPLE I BP_M_MUTE

_REAL / BP_T_DOUBLE I BP_S_SIMPLE I BP M MUTE

exit

BP T POINTER I BP_S_SIMPLE I BP_M_MUTE
call i I---------- -

exit

BP_T_ATOM I BP_S_SIMPLE I BP M MUTE
call L
exit

BP_T
call

L 3 - K
STRING I BP_S_SIMPLE IBP M MUTE

I = 1- H ------- I

Default for s : MAX_ATOM. The text zone must be long enough to hold the
string.

exit L

B P T
call

s2
The text zone contains the string, terminated with a 0 byte. And S2 5 Sj.
STRINGS / BP_S_SIMPLE I BP M MUTE

3-

3-

exit

S1

The text zone must be at least s bytes long.

S?

L 3 - K
s2

The length field is set to the actual length of the text zone that has been filled. And
s2 < s 1.If there is enough place left, the string is terminated with a 0 byte.
Remark : This parameter has a size descriptor argument, immediately preceding
the value argument.

6 - 6 8 November 1990

ProLog by BIM - 3.0 - External Language Interface Calling Prolog Predicates from C - Parameter passing specification

A rra y in p u t

BP_T_INTEGER / BP_T_LONG I BP_S_ARRAY I BP_M_IN

call | n |

Remark : This parameter has a size descriptor argument, immediately preceding
the value argument.

BP T SHORTI BP_S_ARRAY I BP_M_IN
call

Remark : This parameter has a size descriptor argument, immediately preceding
the value argument.

BP_T_FLOAT I BP_S_ARRAY I BPJS1JN

Remark : This parameter has a size descriptor argument, immediately preceding
the value argument.

BP_TJREAL / BP_T_DO ÜBLE I BP_S_ARRAY I BP_M JN
caU ! n ,

■ = 1— 1
1

Remark : This parameter has a size descriptor argument, immediately preceding
the value argument.

BP_T_POINTER I BP S_ARRAY I BPJSiJN
call | n |

I =*-*-1---- 1
Remark : This parameter has a size descriptor argument, immediately preceding
the value argument.

BPT_ATOM I BP_S_ARRAY I BP_M_IN
call r -— i

Remark : This parameter has a size descriptor argument, immediately preceding
the value argument.

BP_T STRING I BP_S_ARRAY I BP_M_IN
call

The text zones must hold the actual strings with a terminating 0 byte.
Remark : This parameter has a size descriptor argument, immediately preceding
the value argument.

November 1990 6-69

Calling Prolog Predicates from C - Parameter passing specification ProLog by BIM - 3.0 - External Language Interface

A rra y o u tp u t

BPJTJNTEGERI BP_T_LONG I BP_S_ARRAY I BP_M_OUT

r ~ ---- 1—H ? 1
1__ :___1 H ? ____1

---- 1—► ! n I

The array is long-term memory and must be freed when no longer needed.
Remark: This parameter has a size descriptor argument, immediately prceding the
value argument.

BP T SHORT I BP_S_ARRAY I BP_M_OUT

call | | H ~~? I

I = I - H ? I

exit i i » r ö — i

The array is long-term memory and must be freed when no longer needed.
Remark : This parameter has a size descriptor argument, immediately preceding
the value argument.

BPTJFLOAT I BP_S_ARRAY I BP_M_OUT
call

exit

= i- h ? ___1
3 - H ? ____1

_____ ï- H n 1
[

¥
The array is long-term memory and must be freed when no longer needed.
Remark : This parameter has a size descriptor argument, immediately preceding
the value argument.

BP_T_REAL / BP_T_DOÜBLE I BP_S_ARRAY I BP_M_OUT
call

exit

¥
The array is long-term memory and must be freed when no longer needed.
Remark : This parameter has a size descriptor argument, immediately preceding
the value argument.

6-70 November 1990

ProLog by BIM - 3.0 - External Language Interface Calling Prolog Predicates from C - Parameter passing specification

BP T_POINTER I BP_S_ARRAY I BP_M_OUT
call | | — 9----- 1

exit | " | » f

r - = i- ^ r

The array is long-term memory and must be freed when no longer needed.
Remark : This parameter has a size descriptor argument, immediately preceding
the value argument.

BP_T_ATOM I BP_S_ARRAY I BPJMjOUT

c = 3 -H ?.... 1
1

f
The array is long-term memory and must be freed when no longer needed.
Remark : This parameter has a size descriptor argument, immediately preceding
the value argument.

BP_T_STRING I BP S ARRAY I BPJMJOUT

call | "" | » p ?------ 1

— c
---► c

The text zones contain the strings with a terminating 0 byte. They are short-term
memory and should not be overwritten. The array is long-term memory and must
be freed when no longer needed.
Remark : This parameter has a size descriptor argument, immediately preceding
the value argument.

November 1990 6-71

Calling Prolog Predicates from C - Parameter passing specification ProLog by BIM - 3.0 - External Language Interface

Array mutable
BPTJNTEGER / BP_T_LONG I BPS_ARRAY I BP_M_MUTE

call

exit

c

— 1 - 1
1

The length is set to the actual returned array length, with n2 < n^
Remark : This parameter has a size descriptor argument, immediately preceding
the value argument.

BP T SHORT I BP_S ARRAY I BP_M MUTE
call

exit

3- Jh.
c =

1___;

B L

The length is set to the actual returned array length, with n2 < n^
Remark : This parameter has a size descriptor argument, immediately preceding
the value argument.

BP T FLOAT ! BP S ARRAY ! BPJMJMUTE
call

exit

1

1_____:— I — ► 1

------------------- 1

1_____:— i — M n 2 i

1— 1 1 » i r ~ I

¥1

2
The length is set to the actual returned array length, with n2 < n^
Remark : This parameter has a size descriptor argument, immediately preceding
the value argument.

BP_TJREAL / BP JTJDO ÜBLE I BP_S_ARRAY I BPJMJMUTE
call

exit

— i -i1
i__

|

I i

{n2

The length is set to the actual returned array length, with n2 < n^
Remark : This parameter has a size descriptor argument, immediately preceding
the value argument.

6-72 November 1990

ProLog by BIM - 3.0 - External Language Interface Calling Prolog Predicates from C - Parameter passing specification

BP_T_POINTER I BP_S_ARRAY I BPJMJMUTE
call

exit

1____ = * - * i r r h |

1____: - |— H

-------------- 1
| ------ 1— H 1 n2 I

1____;— i — »

f 1

The length is set to the actual returned array length, with n2 < n^
Remark : This parameter has a size descriptor argument, immediately preceding
the value argument.

BPJT_ATOM I BP_S_ARRAY I BPJMJMUTE
call

exit

I
[

[
I — 1 - 1

1

1

The length is set to the actual returned array length, with n2 < nj.
Remark : This parameter has a size descriptor argument, immediately preceding
the value argument.

BP_T_STRING I BP_S_ARRAY I BPJMJMUTE
call 1 n 1 I

L _ 3 - H

exit I I H n? I
— i »I —► 0

—► C
The length is set to the actual returned array length, with n2 < nj. The text zones
contain the strings with a terminating 0 byte. They are temporary and should not
be overwritten.
Remark : This parameter has a size descriptor argument, immediately preceding
the value argument.

November 1990 6-73

Calling Prolog Predicates from C - Parameter passing specification ProLog by BIM - 3.0 - External Language Interface

6-74 November 1990

ProLog by BIM - 3.0 - External Language Interface External Manipulation of Prolog Terms

ProLog by BIM - Reference Manual
External Language Interface
Chapter 4

External Manipulation of Prolog Terms

4.1 Representation of terms.. 77

4.2 Term decomposition... 79
Retrieving the type of a term... 79
Retrieving the value of a term..79
Retrieving an argument of a term..80

4.3 Term construction... 81
Ensuring heap space for constructing a term.............................. 81
Creating a new term... 81
Unifying a term to a value... ...81
Unifying two terms.. 82

4.4 Life time of term s... 83
Protecting a term.. 83
Unprotecting a term... 83

November 1990 6-75

External Manipulation of Prolog Terms ProLog by BIM - 3.0 - External Language Interface

4.5 Type conversion of simple terms... 84
Conversion from string to atom.. 84
Conversion from sized string to atom... 84
Conversion from atom to string.. 84
Saving a string.. 85

4.6 Examples.. 86
Term decomposition... 86
Term construction... 88

6-76 November 1990

ProLog by BIM - 3.0 - External Language Interface External Manipulation of Prolog Terms - Representation of terms

4.1 Representation of
terms

A Prolog term can be passed between a Prolog predicate and an external routine, in both
directions. This is accomplished by indicating bpterm as argument type in a declaration
of the external routine, or by using the type BPTBPTERM when calling a Prolog pred
icate from an external routine.

The corresponding value of a term in the external routine, is an opaque handle that rep
resents the term on the system’s heap. The data type for such a handle is Term, which is
defined in the external language interface include file BPextern.h. The term should only
be manipulated, using the external ProLog routines. Relying on other features is imple-
mentation dependent and may break your program in future releases.

The general form of a term can be defined recursively :

<term>
<simple term>
<structured term>
<structure>
<list>

<variable> I <simple term> I <structured term>
<integer> I <real> I <atom> I <pointer>
<structure> I <list>
<functor> (<term>) *
<term> <term>

A term is either a variable, corresponding to an uninstantiated Prolog variable, or a sim
ple or a structured term. A simple term is a Prolog integer, real, atom or pointer. All other
Prolog terms are structured terms. They consist of a functor followed by one or more ar
guments which are again terms. The number of arguments is the same as the arity of the
functor. A special case of structured term is the list, which has two arguments, and whose
functor is always ./2.

In order to manipulate terms and sub-terms, a number of types are defined. These allow
external routines to distinguish between different kinds of terms, and to map the values
to external variables of the right type. For certain types of terms, the value can be repre
sented externally in different ways. Therefore, a number of type variants are defined.
ProLog always returns a base type when the type of a term is requested. External rou
tines, however, may use the variant types, when retrieving or setting term values.

Table : base types with their variant types

Base Type Variant Types
BP_T_INTEGER BP_T_LONG

BP_T_SHORT
b p_t_r e a l BP_T_DOUBLE

BP_T_FLOAT
BP_T_ATOM B PTSTR IN G

The table below gives a list of all defined term types (base and variants), with the corre
sponding C data type and a description of the value of a term of that type.

November 1990 6-77

External Manipulation of Prolog Terms - Representation of terms ProLog by BIM - 3.0 - External Language Interface

Table : term types and corresponding C types

Term type C Data type Value
BP_T_INTEGER int Integer
BP_T_LONG long Long integer
BP_T_SHORT short Short integer
BP_T_REAL double Real
BP_T_DOUBLE double Long real
BP_T_FLOAT float Short real
B P_T_POINTER BP_Pointer Pointer
BP_T_ATOM BP_Atom Atom (internal form)
BP_T_STRING BP_String String (character array)
BP_T_LIST BP_Functor List functor ./2 (internal form)
BP_T_STRUCTURE BP_Functor Term functor (internal form)
BP_T_VARIABLE int Variable number

Remark : The number of a variable is the same number that is used when it is written out.
This means that it may change during the program’s life (particularly after garbage col
lection of the heap).

Example : representation of the term f (g (0x0) , [a , 1])

6-78 November 1990

ProLog by BIM - 3.0 - External Language Interface External Manipulation of Prolog Terms - Term decomposition

4.2 Term
decomposition

R etr iev in g th e type o f a
term

R e tr iev in g the value
o f a term

The Standard method to decompose a term, is first ask its type, and then retrieve its value,
of the returned type or one of this type’s variants.

int B IM P ro Io g g e tte rm ty p e (term)
BP_Term term;

The type of the term term is returned. This is one of the defined base types.

If it is not a legal term, an error message is issued and the special value BP_T_ILLEGAL
is returned.

int BIM_Prolog_get_term_value (term , type , addr_yalue)
BP_Term term;
int type;
union * addr_yalue;

The value of a term term is retrieved and stored at the address given by addr_value.
The type determines how it must be returned. This may differ from the type returned by
BIM_Prolog_get_term_type(). It can also be one of its variant types.
The address passed as addr_value, must be the address of a variable with a type that cor-
responds to the indicated type type.

If term is not a legal term, or if type is an illegal type, or a type that is not conform with
term, an error message is issued and FALSE is returned. Otherwise, TRUE is returned.

Remark : when requesting a BP_T_STRING, the addr_value parameter must be the ad
dress of a pointer variable. This variable will be set to a pointer to the textual representa
tion of the atom. This is a null-terminated array of characters that reside in the system’s
memory, and therefore should not be overwritten. It is not ensured that this string will
remain at the same position during the whole program life time. As a result, if the text is
needed by the external routines for a longer period, it should be copied to external private
memory.

November 1990 6-79

External Manipulation of Prolog Terms - Term decomposition ProLog by BIM - 3.0 - External Language Interface

R etr iev in g a n a rg u m e n t
o f a term

int B IM P ro lo g g e tte rm a rg (term , argnr , arg)
BP_Term term;
int argnr;
BP_Term * arg;

The argnr' th argument of term term is retrieved and stored at the address given by arg.
If term is not a legal term or if argnr is greater than the arity of the term term, an error
message is issued and the function returns FALSE. Otherwise it returns TRUE.

6-80 November 1990

ProLog by BIM - 3.0 - External Language Interface External Manipulation of Prolog Terms - Term construction

4.3 Term construction

E n s u r in g h eap space fo r
co n stru c tin g a term

C rea ting a new term

U n ify in g a term
to a value

A term can be constructed in the external routines in mainly two ways : by creating a new
term, or by instantiating an existing term.

It is important to understand that during construction of a term, the heap may become ex-
hausted causing the garbage collector to be invoked. If this happens, previously con
structed terms may be moved to another place or may even be destroyed. In this case, the
term handle becomes a dangling reference. To prevent this, one can either ensure that
there is enough space left on the heap, before starting the construction of the term, or al
ready created terms can be protected against destruction or movement during garbage
collection. (See section Life time of terms for protecting terms).

int B IM P ro lo g te rm sp ace (size)
int size;

If the heap has not enough space left for a term of size heap cells, the heap garbage col
lector is activated on the spot. If there is still not enough space left (after possible heap
expansions), the function returns FALSE. Otherwise it returns TRUE.

Calculating the size of a term is straightforward. A basic element takes one cell. A list
takes two cells per element: one for the head (which contains the element), and one for
the tail (which is either again a list, or the atom nil). A structure takes as much cells as its
arity plus one.

BP_Term B IM P ro lo g n ew te rm ()

A new term is created on the heap and returned as the function result. This new term is a
free variable.

This function may invoke the heap garbage collector.

If there was not enough space for creating the new term, 0 is returned.

int BIM Pro 1 og_u nifv_term_ valu e (term , type [, value])
BP_Term term;
int type;
union value;

The term term is unified with a value value of type type. If unification succeeded, the
function returns TRUE. Otherwise it returns FALSE and term is left unchanged.
The type of the argument value, must correspond to the one mentioned as type. (See sec
tion Representation of terms for a correspondance table.)
For type BP_T_LIST, no value is required.

November 1990 6-81

External Manipulation of Prolog Terms - Term construction ProLog by BIM - 3.0 - External Language Interface

U nify in g tw o term s

If term is not a legal term, an error message is issued and the function returns FALSE.

Unification is done along the following rules :

• If type is BP_T_VARIABLE, and value is not the number of a free variable, uni
fication fails.

• If type and value represent a free variable, it is instantiated to term.

• If the base type of term is different from the base type of type, unification fails.

• If term is (partially) instantiated, it is unified with value in the Standard Prolog
way of unification.

• A free term that is instantiated to a list or a structure will have its arguments free
variables.

int B IM P ro logun ify te rm s (terml , term2)
BP_Term terml;
BP_Term term2;

The two terms terml and term2 are unified. If unification succeeded, the function returns
TRUE. Otherwise it returns FALSE.

If terml or term2 is not a legal term, an error message is issued and the function returns
FALSE.

Unification is done in the Standard Prolog way.

6-82 November 1990

ProLog by BIM - 3.0 - External Language Interface External Manipulation of Prolog Terms - Life time of terms

4.4 Life time of terms

P ro tec tin g a term

U npro tecting a term

Terms that are passed in a call of an external routine will exist as long as that call is active
(or longer), and will not be destroyed by garbage collection. Further instantiations of the
term will also remain as long as the term itself exists, and no backtracking occurs.

Externally created terms can be moved on the heap or completely destroyed during gar
bage collection of the heap, which may occur during any construction of a term.

Any term or sub-term can be moved when garbage collection of the heap occurs. As a
result, external variables that are term handles (data type Term), are potential dangling
references after garbage collection.

To prevent terms from being moved or destroyed, they can be protected with the external
routines described below. A better way to avoid this kind of problems, is to check that
there is enough space left on the heap before constructing a (large) term (see section Term
construction).

BP_Term BIM Prolog protect term (term)
BP Term term;

The term term is protected against destruction or movement during garbage collection.
Its protected version is returned.

If term is not a legal term, an error message is issued and the function returns 0.

Protecting an already protected term, has no effect: the term itself is returned.

BP_Term BIM Prologunprotectterm (term)
BP_Term term;

The term term is unprotected against destruction or movement during garbage collection.
Its unprotected version is returned.

If term is not a legal term, an error message is issued and the function returns 0.

Unprotecting a non-protected term, has no effect: the term itself is returned.

November 1990 6-83

External Manipulation of Prolog Terms - Type conversion of simple terms ProLog by BIM - 3.0 - External Language Interface

4.5 Type conversion of
simple terms

C onversion
f r o m str in g to a tom

C onversion
f r o m sized s tr in g to a tom

C onversion
f r o m a tom to s tr in g

A number of external functions is provided for converting between different representa-
tions of ProLog internal data.

BP_Atom BIM_Prolog_string_to_atom ([protect,] string)
int protect;
BP_String string;

The null-terminated character array string is converted to a ProLog atom and its internal
representation is returned.
If protect is TRUE, the atom will be protected against destruction in garbage collection
and will remain permanently in the data tables of ProLog. If protect is FALSE, the atom
will be a temporary atom. As a result, it may be destroyed in garbage collection, if there
is no reference to it from a term known by ProLog. If protect is omitted, it defaults to
TRUE.

It is recommended to avoid making protected atoms, as this irreversibly fills up the data
tables. Only when the atom must exist for the rest of the program’s life, it should be made
protected.

After having made an atom from the string, the character array pointed to by string is no
longer needed by ProLog.

BP_Atom BIM_Prolog_strings_to_atom ([protect,] string , length)
int protect;
BP_String string;
int length;

The character array string of length bytes, is converted to a ProLog atom and its internal
representation is returned.
The meaning of protect is the same as in BIM_Prolog_string_to_atom().

BP_String BIM Prolog atom to string (atom)
BP_Atom atom;

The textual representation of the atom atom is returned. This is a pointer to a character
array. That array should not be overwritten, and it is not guaranteed to contain the same
string during the whole life of the program (especially not after garbage collection of the
data tables). If the string is needed for a longer time in the external routine, it should be
copied.

6-84 November 1990

ProLog by BIM - 3.0 - External Language Interface External Manipulation of Prolog Terms - Type conversion of simple terms

S a v in g a str ing

If atom is not a legal atom, an error message is issued and the function returns 0.

BP_String B IM P ro lo g sav estrin g (string)
BP_String string;

The null-terminated character array string is saved in the string tables of ProLog, and the
saved version is returned. The array that is returned, should not be overwritten. It is guar-
anteed that it will always contain the same string.

If there is not enough space left in the string tables to save the string, an error message is
issued and 0 is returned.

This function is an easy and efficiënt replacement for malloc(). However, it should not
be used for temporary saves, as the saved string remains permanently in ProLog’s string
tables.

November 1990 6-85

External Manipulation of Prolog Terms - Examples ProLog by BIM - 3.0 - External Language Interface

4.6 Examples

T erm decom position

The C routine print_term(), defined below, prints out the term it receives from ProLog,
in the same style as the builtin predicate write/1 .

To use it from ProLog, the following declaration is needed :

extern_predicate (print_term (bpterm)) .

The C code for print Jerm():

#include <BPextern.h>

print_term (term)
BP_Term term;
{

int type, nr;
BP_Atom atom_nil;
BP_Term arg;
int int_val;
int * ptr_val;
double real_val;
BP_Atom atom_val;
BP_Functor struct_val;

atom_nil = BIM_Prolog_string_to_atom("nil");
type = BIM_Prolog_get_term_type(term);

switch (type)
{

case BP_T_INTEGER :
BIM_Prolog_get_term_value (term , type , &int_val);
printf ("%d" , int_val);
break;

case BP_T_REAL :
BIM_Prolog_get_term_value (term , type , &real_val);
printf ("%f", real_val);
break;

case BPJL.POINTER :
BIM_Prolog_get_term_value (term , type , &ptr_val);
printf ("0 x%x", ptr_val);
break;

case BP_T_ATOM :
BIM_Prolog_get_term_value (term , type , &atom_val);
printf ("%s", BIM_Prolog_atom_to_string (atom_val));
break;

6-86 November 1990

ProLog by BIM - 3.0 - External Language Interface External Manipulation of Prolog Terms - Examples

case BP_T_VARIABLE :
BIM_Prolog_get_term_value (term , type , &int_val);
printf ("_%dM , int__val);
break;

case BP_T_STRUCTURE :
BIM_Prolog_get_term_value (term , type , &struct_val);
BIM_Prolog_get_name_arity (struct_val, &atom_val, &int_val);
printf ("%s(" , BIM_Prolog_atom_to_string (atom_val));
BIM_Prolog_get_term_arg (term , 1 , &arg);

print_term (arg);
for (nr = 2 ; nr <= int_val; nr++)
{

printf ();
BIM_Prolog_get_term_arg (term , nr , &arg);
print_term (arg);

}
printf (7 ’);
break;

case BP_T_LIST :
printf ("[");
BIM_Prolog_get_term_arg (term , 1 , &arg);
print_term (arg);
BIM_Prolog_get_term_arg (term , 2 , &arg);
term = arg;

while (BIM_Prolog_get_term_type (term) == BPT_LIST)
{

printf ();
BIM_Prolog_get_term_arg (term , 1 , &arg);
print_term (arg);
BIM_Prolog_get_term_arg (term , 2 , &arg);
term = arg;

if (BIM_Prolog_get_term_value (term,BPT_ATOM,&atom_val)
&& atom_val == atom_nil)

else

printf (M l M);
print_term (term);

}
printf ("]");
break;

November 1990 6-87

External Manipulation of Prolog Terms - Examples ProLog by BIM - 3.0 - External Language Interface

default:
printf(”???");
break;

} /* print_term */

The routine distinguishes between the different base types and prints the simple terms in
their specific format. Structured terms are further decomposed and their arguments are
printed by recursively calling the print_term() routine.

T erm construc tion

In this example, external routines are used to maintain a list of attribute settings. The rou
tine get_attribute() takes a structure representing an attribute. It looks up the attribute
name in its tables and instantiates the value if it is found. If no associated value is found,
the value is unified with the default value.

An attribute is specified a s :

attribute/3
attribute (_AttrName, _AttrValue > _AttrDefault)

argl : atom : attribute name
arg2 : any : attribute value
arg3 : any : attribute default value

Argl and argl are free if unknown.

The declaration to use the get_attribute() routine from ProLog is :

extern_predicate(get_attribute(bpterm)) .

The C code for the routine :

#include <BPextern.h>

static BP_Functor attribute_3;
/* initialized with

attribute_3 = BIM_Prolog_get_predicate (
BIM_Prolog_string_to_atom ("attribute") , 3); */

get_attribute (term)
BP_Term term;
{

BP_Functor functor;
BP_Atom attr_name;
BP_Term argl, arg2, arg3;
int int_val;
double real_val;

November 1990

ProLog by BIM - 3.0 - External Language Interface External Manipulation of Prolog Terms - Examples

if (! BIM_Prolog_get_term_value (term,BPT_STRUCTURE,&functor)
I I functor != attribute_3)
goto get_attribute_exception;

BIM_Prolog_get_term_arg (term , 1 , &argl);
if (! BIM_Prolog_get_term_value (argl,BPT_ATOM,&attr_name))

goto get_attribute_exception;

BIM_Prolog_get_term_arg (term , 2 , &arg2);

if (look_up_attribute_int (attr_name , &int_val))
BIM_Prolog_unify_term_value (arg2 , BPT_INTEGER , int_val);

else if (look_up_attribute_real (attr_name , &real_val))
BIM_Prolog_unify_term_value (arg2 , BPTJREAL , real_val);

else /* return default value */
{

BIM_Prolog_get_term_arg (term , 3 , &arg3);
BIM_Prolog_unify_terms (arg2 , arg3);

return;

get_attribute_exception :
BIM_Prolog_error_message ("get_attribute/l : argl is not an attributeNn");

} /* get_attribute */

No special arrangements must be made for term protection. The only term construction
that is performed, is instantiation of (a part o f) a term that is passed from Prolog.

November 1990 6-89

External Manipulation of Prolog Terms - Examples ProLog by BIM - 3.0 - External Language Interface

6-90 November 1990

DEBUGGER

ProLog by BIM - 3.0 - Debugger Table of Contents

Debugger

Contents

Introduction... 1

1. Getting Started... 3
1.1 Preparing a program for debugging.................. 5
1.2 Overall debugger control.. 7
1.3 Output from the debugger... 10

2. Stepping Debugger.. 13
2.1 Box model.. 15
2.2 Controlling the stepping debugger.. 16
2.3 Source line debugging.. 23

3. Post Execution Debugging.. 27
3.1 Trace recording control... 29
3.2 Trace analysis... 30

November 1990 i

Table of Contents ProLog by BIM - 3.0 - Debugger

ii

I

November 1990

ProLog by BIM - 3.0 - Debugger Introduction

Introduction

For easy development of Prolog programs, the ProLog system includes an advanced pro
gramming environment. This programming environment is based on state-of-the-art Pro
log debugging techniques and exploits all features of currently available multiwindow-
ing and high resolution screen supporting Workstations for an increased comfort and pro-
ductivity of the ProLog programmer.

Apart from the conventional tracing package based on the box model, ProLog incorpo-
rates two novel debugging techniques. First, the tracing package has been extended with
features for source-oriented debugging, improving the link between the execution mon-
itoring and the original source produced by the user. Source line numbers and variable
names are meaningful to the debugger and enhance its usability and effectiveness for de
bugging large and complex applications.

A second novel debugging technique is the post-mortem analysis. After the execution in
debugging mode has produced an incorrect result or fails, the trace information can be
analysed in an a-posteriori manner. The tracing information is displayed using the struc
ture of the original program, providing a top-down, breadth-first view of the program ex
ecution instead of the sequential depth-first view of traditional Prolog debugging pack-
ages. An algorithmic debugging strategy has been implemented on top of this post-mor
tem debugging facility.

The multiwindowing programming environment integrates the ProLog system and its
debugger with the text editor, and structures the various interaction modes in an ergo
nomie user interface. The input to and the output from the system are distributed logical-
ly among different sub Windows, all monitored by a main interaction window. Each sub-
window is an editing window in its own right and thus offers the Standard editing func
tions, e.g. its contents can be saved for later inspection. Interaction with the system is not
restricted to typing commands, but whenever possible appropriate buttons are provided,
such that actions require as little manipulation as possible. The current ProLog session,
the original source, error messages, data files, and all control panels are readily available
and tighlty interlinked.

Experience with similar multiwindow programming environments for conventional pro-
cedural languages has shown a considerable positive impact on achieving a higher pro-
ductivity in and quality of developing end-user applications.

November 1990 7-1

Introduction ProLog by BIM - 3.0 - Debugger

7-2 November 1990

ProLog by BIM - 3.0 - Debugger Getting Started

ProLog by BIM - Reference Manual
Debugger
Chapter 1

Getting Started

1.1 Preparing a program for debugging..5
Debugger directives... 5

1.2 Overall debugger control.. 7
Environment commands.. 8
Multiple commands... 9

1.3 Output from the debugger... 10

November 1990 7-3

Getting Started ProLog by BIM - 3.0 - Debugger

7-4 November 1990

ProLog by BIM - 3.0 - Debugger Getting Started - Preparing a program for debugging

1.1 Preparing a program
for debugging

Debugger directives

Before a predicate can be debugged, it must be compiled to debug code. The difference
between dynamic or static code (which is generated by default) and debug code, is that
the latter contains some additional information. This allows the system to trace the pred
icate while executing. The execution of debug code is therefore slower than the execu
tion other codes.

There are several ways to compile a predicate to debug code. One is to compile the com
plete file containing the predicate with the ’-Cd’ option. The effect is that all predicates
defined in the file, are compiled to debug code.

With the second method one has finer control over which predicates are to be debugged.
It consists of placing directives around the predicates that must be compiled to debug
code. The following directives are provided for this purpose :

setdebug/O
Turns the compiler into debug code generation for the following predicates.

setnodebug/O
Turns the compiler into normal non-debug code generation for the following predi
cates.

option/1
If argl equals ’d+’ then this directive is equivalent to the setdebug/O directive. If
argl equals ’d-’ then this directive is equivalent to the setnodebug/O directive.
Note that this predicate can also be called with other values for argl. The complete
explanation of option/1 is given in the chapter on directives

To compile a complete file to debug code, using this method, it is sufficiënt to place a
single setdebug/O directive at the beginning of the file. The corresponding setnodebug/
0 at the end of the file may be omitted.

All definitions of a predicate must be compiled in the same way. It is not allowed to
compile some clauses of a predicate to debug code and the others to normal code.

A predicate that is compiled to debug code is treated as if made dynamic. This implies
that it may be retracted or asserted.

Predicates that are bug-free do not have to be compiled to debug code, even when they
are called from a debug coded predicate. The result is that the bug-free predicates will
not be fully traced. This can however be confusing when following the execution or
analysing the trace afterwards.

November 1990 7-5

Getting Started - Preparing a program for debugging ProLog by BIM - 3.0 - Debugger

Finaliy a predicate can also be compiled to debug code by entering the predicate inter
actively. The interactive compiler however, produces dynamic code by default. Debug
code can be obtained by using the builtin please/2 : please (debugcode, on).
It is not allowed to enter clauses to be compiled to another type of code than the type of
the previously entered (or consulted) clauses for the same predicate.

7-6 November 1990

ProLog by BIM - 3.0 - Debugger Getting Started - Overall debugger control

1.2 Overall debugger
control

debug/1
debug(_Command)

argl : ground : atom

The atom argl is treated as a debugger command and executed.
This enables debugger commands to be executed without entering the debugger. It
only applies to the commands that make sense when no query is being solved.
This predicate is especially useful in your .pro file to set up your preferred debug
ging environment (using the alias and command commands).

debug/2
debug (JDebugOption, JValue)

argl : ground : atom
arg2 : ground or free

Argl is the name of a debugger option and argl is its value. If argl is free, it will be
instantiated to the current value of the option. Otherwise the option’s value is
changed to argl.
The table below gives the possible options and the allowed values. Default values
are underlined.
c : cut on/off Controls the choice point destruction under de

bugger execution. When off, choice points are
only marked when cut, upon backtracking this is
mentioned as a ’fail due to cut’. When on,
choice points are removed immediately, saving
stack space.

p : prompt on/off Whether a command should be requested after
activation of the debugger or consult.

td : tracedepth integer (default: -1)
Allowed depth of the recorded trace.

tr : tracerecord on/off Recording of trace.

wd : writedepth integer (f f)
Nesting depth for output of structured terms.

wm : writemodule on/off Provides module qualification in debugger out
put.

wp : writeprefix on/off Usage of prefix functor form in debugger output.

wq : writequotes on/off Usage of quotes in debugger output.

November 1990 7-7

Getting Started - Overall debugger control ProLog by BIM - 3.0 - Debugger

Environment commands
alias

alias <key> <string>

Defines <key> as an alias for <string>. Without argument, a list of currently defined
aliases is printed.

command
command <cmd> <pred>[:<type>[:<modif>]]
command <cmd>
command

Defines a new command, named <cmd>. When issued, the predicate <pred> is
called. If an argument type <type> was specified, it is passed to <pred>/l, otherwise
<pred>/0 is called. The <type> specifier determines how the selection is to be inter-
preted to form the command argument.
Available argument types are :

literal: take literally
number : expand to an integer number
atom : expand to an atom
linenr : replace by the source file name and line number
filename : expand to a Unix path and file name
varname : expand to a variable name (leading _ is stripped)
predname : expand to a predicate name/arity

A linenr is returned as a list of three elements: the absolute path, the base name of
the file and the line number.
A filename is returned as a list of two elements: the absolute path and the base name
of the file.
The type can be modified with:

• list: the command can have several (at least one) arguments of the same type,
separated by blanks or comma’s

• optional: the argument is optional

A list of arguments is passed to the predicate as a Prolog list. If no actual argument
is present for an optional argument, the empty list is passed as the argument.

Without arguments, command prints a list of user defined commands.

With only one argument, any existing definition for that command is destroyed.

7-8 November 1990

ProLog by BIM - 3.0 - Debugger Getting Started - Overall debugger control

For example:

If the following definitions are given :

command delete do_delete:number:list
command file do file: filename
command print do_print:varname:list

The following commands invoke the predicate calls :

The input to the debugger consists of a sequence of commands. Each command consists
of a key word possibly followed by a number of arguments. Multiple commands can
be given on the same input line, separating them with The effect will be as if the
commands were entered one by one each time the debugger prompts for a command. A
sequence of commands can be redefined as one single command in combination with
the alias command

For example:

To combine the advantages of seeing füll trace information and source line indi-
cation you can use the command :

’creep ; show’.

To use this several times an alias can be defined as follows :

alias slow ’creep ; show’.

delete 1,2,3
file abc
print _x,_y

?-do_delete([l,2,3]).
?-do_file([’/path’,’abc’]).
?-do_print([x,y]).

Multiple commands

November 1990 7-9

Getting Started - Output from the debugger ProLog by BIM - 3.0 - Debugger

1.3 Output from the
debugger

The main output of the debugger is a trace of the executed query. This trace consists of
a single line for each port of the boxes that correspond to predicates that are compiled
to debug code. Parts of it may be omitted, in the stepping debugger by using a command
that skips certain ports and during trace recording by simply setting off the recording.

Each line in trace mode starts with a number indicating the box nesting level. The top
level box is at level 1 and all boxes that are nested deeper are at a higher level.

A line in trace mode which is recorded for post execution debugging, has an extra lead
ing number giving the line number of the recorded trace; the starting line number is 1.

The next portion of the line is an indentation that reflects the nesting depth. It is cyclic
(i.e. once the nesting is more than 16, the indentation restarts from the left.)

A symbol then follows, reflecting the kind of port that is displayed and the subgoal that
is in execution at that port. The arguments of the displayed predicate are printed with
the value that corresponds to their instantiation level at that port. At a failed unification
port, the arguments are unified as far as possible. If for instance, the unification failed
on the second argument of a predicate, then the first argument will be shown in its uni
fied form and the others in their non-unified form.

If an error occurred between this port and the following one, the error message is at-
tached to this line of information.

Writing out the arguments of a predicate is done to the same nesting depth as set by

?- debug (writedepth , _x).

The symbols that identify the kind of port consist of one or two characters using the fol
lowing basic rules :

• The first character indicates which of the five ports it is:
? call port
> unify port
+ exit port

fail port
< redo port

• For builtin predicates, the second character is the same as the first.

• For user defined predicates or builtins defined in Prolog, a possible second
character gives some extra information.

7-10 November 1990

ProLog by BIM - 3.0 - Debugger Getting Started - Output from the debugger

Complete summary of the different port indicator symbols :

? call port
> unify port
+ exit port

fail port
< redo port
?* call of non-debug code predicate
+* exit of a fact
— fail during unification
-! fail because alternatives are cut away
-0 fail because predicate is undefined
?? call of a builtin
++ exit of a builtin

fail of a builtin
« redo of a builtin
!! fail of a builtin because alternatives are cut away

Finally, the alternatives of an OR-list are indicated with

November 1990 7-11

Getting Started - Output from the debugger ProLog by BIM - 3.0 - Debugger

7-12 November 1990

ProLog by BIM - 3.0 - Debugger Stepping Debugger

ProLog by BIM - Reference Manual
Debugger
Chapter 2

Stepping Debugger

2.1 Box model... 15

2.2 Controlling the stepping debugger.. 16
Invoking and leaving the debugger..16
Spypoints.. 17
Getting and removing spypoints.. 17
Controlling port selection... 19
Controlling leashing.. 19
Actions on leashed ports.. 20

2.3 Source line debugging.. 23
Break points..23
Integration in stepping debugger...23
Commands..24

November 1990 7-13

Stepping Debugger ProLog by BIM - 3.0 - Debugger

7-14 November 1990

ProLog by BIM - 3.0 - Debugger Getting Started - Box model

2.1 Box model

The debugger is based on a five-port box model. It is possible to step from one port to
the other in the execution of a query. One can also take larger steps to advance more
rapidly.

During this stepping, intervention by the user is possible.

With each predicate a box with five ports is associated. For each activation of the pred
icate a new instance of that box is created. During execution the box is entered or exited
via its ports. At those ports, the debugger gives its information. It is possible to indicate
at which ports information is required, and even to halt execution at certain ports.

exit

redo

A first port is the call port which is passed whenever the predicate is called as a subgoal.
Immediately following this port is the unify port. This port is reached after unification
of the calling subgoal with the head of the predicate. Another input port of the box is
the redo port. Whenever an alternative definition of the predicate is tried (after failure
has occurred), the box is entered via its redo port. The next port that will be passed, is
again the unify port. The box also has two output ports. The exit port is used when ex
ecution of the predicate has succeeded i.e. when all subgoals are solved. The other out
put is the fail port which is used when the predicate fails. This can occur due to a failing
unification or because a subgoal could not be solved.

Whenever a port name must be given, one can choose between the füll name or an ab-
breviation which is the first letter of the name.

November 1990 7-15

Getting Started - Controlling the stepping debugger ProLog by BIM - 3.0 - Debugger

2.2 Controlling the
stepping debugger

Invoking and leaving the
debugger

There are several levels to control the stepping debugger. First of all, it can be used in
two modes :

• full tracing —> trace mode

• spypoint checking —> debug mode

Deciding which mode to use can be decided when starting the debugger. It can however
also be determined at each step, because it is possible to switch between both alterna
tives during execution.

The following builtin predicates are used to invoke and leave the debugger. They only
effect the queries following the command, and not the current one, if they are called
from a predicate. From the moment the debugger is started, all subsequent queries are
executed in debugging mode.

debug/0
Invokes the debugger and starts it in spypoint checking (debug) mode. Spypoint
checking assumes spies have been placed on the ports that must be traced. Ports
without a spy are not traced.

nodebug/0
Turns the debugger off.

trace/0
Invokes the debugger and starts it in füll tracing (trace) mode. In füll tracing mode,
the debugger tracés all ports it encounters.

notrace/0
Turns the debugger off.

The debug/0 and trace/0 predicates initially switch to debug mode (as on a leashed
port). In this mode the system waits for breakpoint setting, a request for information
(see the section on Source Line Debugging) or the run command which will allow one
to invoke the predicate to be executed.

run
Leaves debug mode.

7-16 November 1990

ProLog by BIM - 3.0 - Debugger Getting Started - Controlling the stepping debugger

Spypoints

Getting and removing
spypoints

A spypoint on a port of a predicate is an indication to the system that it must catch the
control flow at that port. Interaction with the debugger is only possible at those points.
The user can select if a port must be shown or not. A port can be leashed or not. If the
port is leashed the system halts execution and waits for a command of the user. An un-
leashed port is shown but execution continues.

Several builtin predicates are provided for setting and removing spypoints. Normally,
when setting a spy, one must indicate on what predicate it must be set and on which
ports of its box. As it occurs frequently that one wishes to set spies on the same set of
ports for several predicates, the possibility exists to define default ports for setting spies.

When a predicate is initially loaded, it has no spies. Spies that are set remain active until
the end of the session, or until they are explicitly removed. Note that when one leaves
the debugger, the same spypoints remain set and become active again when the debug
ger is reinvoked in the same session.

showspy/0
Prints the current spypoints on the current output stream.

spydefault/l
spydefault (__Port)
spy default ([_Port I JPortList])

argl : free or ground : atom or list of atom

If argl is ground, the default ports on which spies will be set are defined by argl.
This can be one atom (to select only a single port), or a list of atoms (to indicate a
list of ports) chosen from call, redo, exit, fail, unify. The port names can be abbre-
viated to their first letter. If argl is free, it is instantiated to the current spydefault
setting (and will always be a list of füll port names). Originally the spydefault in-
cludes the five ports.

showspydefault/0
Prints the current spydefault setting on the current output stream.

spy/0
Sets spies on all predicates currently in the database. The spies are set on all ports
that are currently selected (with spydefault/l).
Any existing spypoints are left unchanged.

spy/l
spy (JPredname / _Arity)

November 1990 7-17

Getting Started - Controlling the stepping debugger ProLog by BIM - 3.0 - Debugger

spy (JPredname)
spy ([Predname / _Arity I JPredList])
spy ([JPredname I JPredList])

argl : ground : atom!integer, atom or list

Sets spies on the predicates given in argl on the currently selected ports. A single
predicate is given in the form name/arity. When the arity is omitted spies are set on
all predicates with argl as functor name. The predicates must be given, as one pred
icate or collected in a list in argl. Any existing spypoints are left unchanged.

spy/2
spy (SpyList, _Port)
spy (_SpyList, [JPort I _PortList])

argl : ground : atom!integer, atom or list
arg2 : ground : atom or list of atom

Sets a spy on the predicates given in argl on the ports indicated by arg2. The pred
icates must be given as single predicate or collected in a list in argl. The ports are
given in a list in arg2 or as one single atom and may be abbreviated to their first let
ter. Any existing spypoints are left unchanged.

nospy/0
Removes the spypoints from all ports of all predicates in the database.

nospy/l
nospy (_PredName / _Arity)
nospy (JPredName)
nospy ([JPredName / _Arity I Predl ist])
nospy ([_PredName I _PredList])

argl : ground : atomUnteger, atom or list

Removes the spypoints from all ports of the predicates given in argl. The predicates
must be specified as in spy/1.

nospy/2
nospy (_PredList, _Port)
nospy (_PredList, [_Port I _PortList])

argl : ground : atomUnteger or list of atom/integer
arg2 : ground : atom or list of atom

Removes the spypoints from all ports indicated in arg2 of the predicates given in
argl. The predicates must be given as single predicate or collected in a list in argl.
The ports are given in a list in arg2 or as one single atom.

7-18 November 1990

ProLog by BIM - 3.0 - Debugger Getting Started - Controlling the stepping debugger

Controlling port selection

The user can select the ports he wants to see during debugging. The non-selected ports
will never be shown and execution will never be suspended at such ports.

showports/1
showports (JPort)
showports ([_Port I _Portlist])

argl : ground or free : atom or list of atom

If argl is instantiated, these ports will become the selected ports to be shown during
stepping debugging. If argl is free, it is instantiated to the currently selected ports.

Controlling leashing

Another level of debugger control is known as leashing. A port can be leashed or un-
leashed. Whenever the debugger tracés a leashed port, it halts execution and waits for a
command from the user. An unleashed port on the other hand, is traced but execution
continues immediately.

Leashing control is done on the port level. It is the same for all predicates. It is thus not
possible to have different ports leashed for different predicates.

leash/l
leash (_Port)
leash (JPort I _PortList])

argl : ground or free : atom or list of atom

Sets leashing on the ports given in argl. This can be a single atom giving the name
of a port or a list of such atoms. The previous leash setting is undone. If argl is free,
it is instantiated to the current leash setting which is a list of füll port names.

showleash/O
Prints the currently leashed ports on the current output stream. By default the call,
unify and redo ports are leashed.

The leash setting is not affected by turning the debugger on or off. It remains unchanged
until the next call to leash/l with a non-free argument.

Finally, it is possible to interrupt a running program if the debugger is active. When
interrupted, a choice is given to either abort the execution (i.e. return to the top-level),
continue execution, or switch to füll tracing. In the latter two cases, the interrupt handler
is called and executed. See Builtin Predicates - Signal handling on how to change the
default handler (the default handler returns to the top-level with an error-message).

November 1990 7-19

Getting Started - Controlling the stepping debugger ProLog by BIM - 3.0 - Debugger

Actions on leashed ports
On a leashed port, execution is suspended and the user has to give a command to deter
mine how execution should continue.

The available commands are listed below, together with the key that has to be entered
to invoke them. Some commands can also be invoked by typing their first letter as spec
ified between brackets after each command. A sequence of commands can be given on
the same command line separating them with

New commands can be defined by the command command as mentioned in the previ
ous chapter getting started.

The default command, which is assumed when the empty string is entered, depends on
whether the predicate is user-defined or builtin. For user-defined predicates the creep
command is executed, while for builtins the go on command is used.

help (h or ?)
Prints an overview of available commands.

help <command> (h or ?)
Prints more information for <command>.

alias <key> <string>
Defines <key> as an alias for <string>. Without argument, a list of currently defined
aliases is printed.

backp (b)
Goes back zero levels. This means restart execution of the first definition of the cur
rent predicate (go back to the call port of the same box). Side effects are not undone.
On a port of a builtin predicate, this command has the same effect as creep.

backp <n> (b)
Goes back <n> levels. This means, restart execution of the first definition of the
predicate activated <n> levels back. No side effects are undone. If <n> equals zero,
this command is exactly the same as back without argument. On a port of a builtin
predicate, it has the same effect as creep. Use the command where to get an Over
View of the activated predicates at each level.
In counting the levels, static predicates not compiled to debug code are discarded.
The same is true for predicates that have been cut in debug cut mode.

button <command>
Appends a button for <command> in the debugger window .

7-20 November 1990

ProLog by BIM - 3.0 - Debugger Getting Started - Controlling the stepping debugger

creep (c)
Résumés execution with füll tracing until the next leash port.

Depth <n> (D)
Sets the writedepth for the debugger to <n> levels. Its default value is 10. This is
analogous to debug(writedepth, n).

fail (f)
The system acts as if the current predicate failed for some reason and starts back
tracking. On the fail port this command has the same effect as creep.

go on (g)
Résumés execution without tracing until the redo port of the same box or until the
first port after the box is left, whichever comes first. This is extremely easy for pred
icates for which one does not want to see any other ports except the call port (e.g.
builtins). When arriving at that call port and giving the go on command, the unify
and exit ports are skipped and the next call in the goal is displayed.

leap (1)
Résumés execution without tracing until the next spypoint or the next port of the
same box, whichever comes first.

menu <command>
Appends a menu item for <command> in the debugger window .

Module (M)
Switches the toggle for the printing of module qualifications in trace lines. This is
analogous to debug(write module,).

nextp (n)
Résumés execution without tracing until the next spypoint.

Prefix (P)
Switches the toggle for the usage of operators in printing trace lines. This is analo
gous to debug(writeprefix,).

prolog (p)
A query prompt is displayed and a Prolog call can be entered. This call will be exe
cuted in non-debug mode. The results are given according to the value of the

November 1990 7-21

Getting Started - Controlling the stepping debugger ProLog by BIM - 3.0 - Debugger

Quotes (Q)
Switches the toggle for the usage of quotes in trace lines. This is analogous to de-
bug(writequotes,).

quit (q)
Aborts and returns to the toplevel of the system.

redo (r)
Restarts execution of the same definition of the predicate that is currently being ex
ecuted. This brings the execution back to the redo port of the same box (or the call
port if the current definition is the first one). Note that no side effects will be undone.
However, if a trace is recorded, it will also turn back so that nothing will appear
twice. On a port of a builtin predicate, this command has the same effect as creep.

skip (s)
Resumes execution without tracing until the next port of the same box or until the
first port after the box is left, whichever comes first. Leaving a box means the exit
or fail port is passed. Both conditions may seem equivalent. The difference is when
the output ports are not leashed, because then the debugger continues in skip mode.
This command entered on an exit or fail port has the same effect as creep.

Trace (T)
Sets recording of the trace on or o ff .

unbutton <command>
Deletes the button for <command> in the debugger window.

unmenu <command>
Deletes the menu item for <command> in the debugger window.

where (w)
Gives a trace-back list of the active predicates. First the immediate ancestor is print
ed, followed by its ancestor and so on until the top goal is reached. The debugger
remains at the same port and a new command is prompted.

’showsolutioiT-option. Afterwards, control returns to the debugger at the same point
and a new command is expected. This can be used e.g. to request a listing, or to set
or remove spypoints during program execution.

7-22 November 1990

ProLog by BIM - 3.0 - Debugger Getting Started - Source line debugging

2.3 Source line
debugging

Instead of using a predicate oriented approach, programs can also be debugged in a
source oriented fashion. This means that the debugging process follows the structure of
the program as it was written.

In ProLog, source-oriented debugging is based on program lines rather than on predi
cates.
Break points can be set on program lines. It is possible to set multiple break points: one
on each line. Resuming the program execution can then be done line per line.

Break points
A break point is a variant of a leashed spypoint. The execution always stops at a break
point. The corresponding line of the program source is printed out.

If a breakpoint is set on a clause heading (i.e. a predicate definition), the relation be
tween break points and spypoints is as follows :

• A break point that is set at a line containing a clause heading is only put on
the unify port of the corresponding clause of the predicate.

• A spypoint at the unify port of a predicate is put on the unify ports of all the
clauses of that predicate.

• If the predicate has only one definition, a break point will have the same ef
fect as a spypoint on its unify port.

If a break point is set on a line containing a call (as first term), the break point will be
put on both the call port and the redo port of the box that is created for that predicate
activation. In contrast to a spypoint on the call and redo ports of that predicate, the break
point will not be encountered if the predicate is called from other places.

Integration in stepping
debugger

The source line debugger is incorporated in the stepping debugger. There are some ad
ditional commands to control it. Both methods can be mixed.

The source line commands can be executed not only from a break point, but also from
each leashed spypoint.

November 1990 7-23

Getting Started - Source line debugging ProLog by BIM - 3.0 - Debugger

Commands
The following set of commands are available as an addition to the stepping commands.
New commands can be defined by the command command as mentioned in the previ
ous chapter. A sequence of commands can be given on the same command line separat-
ing them with ’ ; ’ (spaces are significant).

Some notes on the arguments of these commands:

<line>

<filename>

<pred>

A line is indicated by its number. By default, this refers to the cur
rent source file. To name a line in a different file, without changing
the current source file, the line number may be preceded by <file-
name>, the source file name between back quotes.

A file is always named by its base name (without the .pro exten-
sion). The usual UNIX rules for absolute or relative names apply.

A predicate must be given in the form atom/arity.

<varname> The name of a variable is its symbolic name with the leading

clear <line>
Any break point at <line> is removed.

cont
Execution continues up to the next break point.

delete <numher>
The break point with identifier <number> is removed.

up
This command does not affect the execution. It only brings the focus environment
one level higher in the active predicate chain, and allows the print command to be
used on variables in the ancestor environments.

down
This is to be used after one or more up commands. It brings the focus environment
one level lower. This command does not affect the execution.

back
Goes back to the previous level.

file <filename>
The source file with name <filename>.pro is loaded as current source file.

7-24 November 1990

ProLog by BIM - 3.0 - Debugger Getting Started - Source line debugging

list <linel>, <line2>
A piece of the program source, from <linel> up to <line2> is displayed.

next
The current line is executed. As soon as the following line becomes active, execu
tion is halted again. The called subgoal is not entered. It also stops if there is no fol
lowing line for the predicate or if the current line leads to a failure.

pred <pred>
The first line of the first definition of predicate <pred> is displayed. This command
has no effect if <pred> has no definition or was not compiled for debugging.

print <varname>
The value of the variable with name <varname> and defined in the environment of
the predicate that is being displayed, is printed out. If that variable is not defined at
that moment and in the current environment, this is indicated accordingly.
The up and down commands may be used to reach variables in other environments.

show
The line where execution is currently stopped, is displayed.

status
A list of all active break points is printed. The number between brackets is the break
point identifier.

step
Execution is resumed for a single step. This means that it stops from the moment
that a n o t h e r line becomes active. This can be the following line or the heading line
of a called subgoal or a line reached after failure.

stop at <line>
A break point is set at the indicated <line>. If the given line does not contain either
a heading or a call, the source is scanned backward for a line that does contain one.

stop in <pred>
Break points are set at all lines that contain a heading of predicate <pred>. This is
a variant of setting a spypoint on the unify port of the predicate. It is not completely
the same because the unify port does not have to be leashed in order for the spypoint
to become a break point.

November 1990 7-25

Getting Started - Source line debugging ProLog by BIM - 3.0 - Debugger

7-26 November 1990

ProLog by BIM - 3.0 - Debugger Post Execution Debugging

ProLog by BIM - Reference Manual
Debugger
Chapter 3

Post Execution Debugging

3.1 Trace recording control...29

3.2 Trace analysis... 30
Commands... 31

November 1990 7-27

Post Execution Debugging ProLog by BIM - 3.0 - Debugger

7-28 November 1990

ProLog by BIM - 3.0 - Debugger Post Execution Debugging - Trace recording control

3.1 Trace recording
control

Post execution debugging requires the query to be executed and its trace to be record
ed. This can be done in conjunction with the stepping debugger or quietly, without trac
ing anything during execution. Afterwards the recorded trace can be analysed.

Normally, the debugger will not record the trace of a program. If it has to, one must in
dicate this before entering the query. In that case, the following query (and only the first
one) will have its trace recorded. A recorded trace can be analysed immediately after
termination of the query or after execution of some other queries (but then without re
cording the trace).

When a trace is recorded, it is possible to temporarily turn the recording off and on. This
may lead to problems when trying to analyse the trace with the builtin analysis algo-
rithm.

Another method to ignore some parts of the trace is to set the depth of the trace that must
be recorded. This is done with

?- debug (tracedepth, _x).

which means that from that moment on, only _x levels of the trace will be recorded. This
method may also lead to problems when trying to analyse the trace with the builtin anal
ysis alghorithm. When _x is negative, the limit on the depth is unset.

The following predicates provide control over the trace recording process :

keep trace/0
A trace of the execution of the following query will be recorded. After completing
the query execution, analyze/0 is automatically activated.

The previous section of actions on leashed ports explains a facility to turn recording of
the trace on and off interactively, This has only effect when the trace is currently record
ed.

November 1990 7-29

Post Execution Debugging - Trace analysis ProLog by BIM - 3.0 - Debugger

3.2 Trace analysis
Once a trace is recorded, it can be analyzed either manually by zooming through it, or
in a more efficiënt way by using the algorithmic debugging builtin predicate.

The predicates that are provided for zooming on the trace are :

zoomln/2
zoomin (FromLine, JToLine)

argl : ground : integer
arg2 : ground : integer

Displays lines argl to arg2 of the trace. If argl is less than 1 it is replaced by 1 and
if arg2 is greater than the number of the last recorded line, it is assumed to be equal
to it. If the indicated range is empty, an error message is printed, giving the total
number of recorded lines.

zoomId/2
zoomld (_FromLine, _Depth)

argl : ground : integer
arg2 : ground : integer

Gives the trace from line argl on for a maximal nesting depth of arg2. All lines that
are nested more than arg2 levels deeper than the line argl, are not printed. Output
is terminated at the first trace line that has a smaller level than the first line or that is
a call port of the same level as the first line. If arg2 equals zero, only lines of the
same level as the first line are printed.

The analysis algorithm is invoked with :

analyze/0
Searches interactively for bugs in the query for which a trace has been recorded.

The output of this analyzer resembles the source form of the predicates. Each goal pred
icate that is considered is displayed by its head and all its subgoals, one per line. The
line on which the head is displayed has as number 0, the first subgoal is on line 1 and
so on for the following subgoals.

A predicate that failed, will only have its succeeded subgoals shown. The subgoal that
caused the failure is also printed, followed by the indication failed. If the predicate
failed because the unification of the head failed, then this indication is printed on the
head line and no subgoals are shown.

A predicate that was compiled to non-debug code, is displayed without its subgoals, as
if it were a fact.

7-30 November 1990

ProLog by BIM - 3.0 - Debugger Post Execution Debugging - Trace analysis

The analyzer first displays the query as a goal predicate. It then waits for a command
before continuing. At this point, one can choose to investigate a subgoal or to return to
the calling predicate using one of the following commands.

If the debugger window is active, the corresponding program source for each predicate
definition is displayed in the source window.

The analyzer always starts by displaying the goal predicate at its call port. It considers
the first solution of the query, even if a previous analysis has investigated following S o

lutions. And it starts such that for succeeded subgoals only the solution is investigated
and not the failures.

C o m m ands

New commands can be defined by the command command as mentioned in the previ
ous chapter . A sequence of commands can be given on the same command line sepa-
rating them with ’; ’

advance (a)
If the current goal predicate has failed, or if its failures are requested for, it is possi
ble that there are several failures to be analyzed. Initially the first is displayed. With
this command the analyzer advances to the next failure or solution (if there is one).
On the top level of the query, this command can be used to advance from solution
to solution or failure. Each failure or solution of the query will be investigated. This
corresponds somewhat to the backtracking mechanism of Prolog. Once the last fail
ure or solution has been displayed, this command has no further effect.

alias <keyxstring>
Defines <key> as an alias for <string>. Without argument, a list of currently defined
aliases is printed.

back (b)
Leaves this level and go back to the caller. On top level (the query) this command
is ignored.

call (c)
The goal predicate will from now on be displayed at its call port. This means that
the head and all subgoals will have their arguments unified as far as they were just
before being called. If for instance, the first subgoal has a free variable as parameter,
it will be displayed as variable. If this subgoal instantiates this variable and the next
subgoal also has it as parameter, then for the second subgoal, it will be displayed in
its instantiated form.

November 1990 7-31

Post Execution Debugging - Trace analysis ProLog by BIM - 3.0 - Debugger

detail (d)
Gives a more detailed output for the goal predicate. Both the call port and the exit
port of the subgoals (and the head) are printed out. Each line is printed in the same
form as for the zoom predicates.

exit (e)
From now on the goal predicate is to be displayed at its exit port. All parameters are
shown as far instantiated as they were after completion of each subgoal.

failure (f)
Investigates the failing subgoal. This is exactly the same as entering the number of
the failed subgoal as command. If all subgoals succeeded, nothing happens.

Failures (F)
If a subgoal has succeeded, the analyzer will only display its solution when you ask
to investigate it. It could also be the case that you want to see the failures that oc-
cured before the solution was found. With this command a switch can be turned that
indicates the analyzer if it has to investigate previous failures or not.

heln (h or ?I----1“ V— “ - ~ /
Prints this overview in a short form.

invest <n>
Continues investigation of subgoal number <n>. If <n> is outside the range of dis
played subgoals, the command will be ignored. Commands ’ 1’, ’2’, up to ’9’ are pre
defined as aliases for ’ in vest V and so on.

quit (q)
Aborts analysis and return to the top level of the system.

7-32 November 1990

WINDOWING ENVIRONMENT

ProLog by BIM - 3.0 - Windowing Environment Table of Contents

Windowing Environment

Contents

l .X V ie w .. 1
1.1 Window configuration.. 3
1.2 Master window... 5
1.3 Monitor window... 6
1.4 Debugger window... 20
1.5 Defaults.. 24

November 1990 i

Table of Contents ProLog by BIM - 3.0 - Windowing Environment

ii November 1990

ProLog by BIM - 3.0 - Windowing Environment XView

ProLog by BIM - Reference Manual
Windowing Environment
Chapter 1

XView

1.1 Window configuration............................ 3

1.2 Master window... 5

1.3 Monitor window... 6
Status report.. 6
Working directory... 7
Switches...8
Tables.. 9
Predicates... 11
Files.. 14
Debugger..16

1.4 Debugger window... 20
Window layout.. 20
Status panel... 21

November 1990

XView ProLog by BIM - 3.0 - Windowing Environment

Command panel.. 21
Source window... 22

1.5 Defaults...24

8-2 November 1990

ProLog by BIM - 3.0 - Windowing Environment XView - Window configuration

1.1 Window
configuration

The ProLog window environment consists of several window frames, each running as
a separate process. The following figure gives a view of this window and process
configuration. It also shows the Windows interaction.

The master window is the one running the ProLog engine. This is the frame in which
the system is started. This is usually a shelltool or a cmdtool.

The other Windows are not active by default. They can be activated separately at any
time. It is also possible to desactivate them when desired. The activity of these Win
dows is controlled by the please/2 predicate with switches envmonitor (em) and
envdebug (ed) for the monitor and debugger window respectively.

To pop-up the monitor window, for example, enter the query :

> ?- please(em , on) .

As all other switches, the environment control switches can also be specified in the
command line. The following command will start up the system with both Windows ac
tive :

% BIMprolog -Pem -Ped

November 1990 8-3

XView - Window configuration ProLog by BIM - 3.0 - Windowing Environment

Whenever a window is activated, the master process will start up a new process that cre-
ates the window frame. Upon creation, the defaults database is consulted to get the us
er’ s preferred window layout. When running, the monitor and debugger Windows in
teract with their master.

These Windows can be closed, resized and moved around the screen like any other
XView frame.

In the following chapters, the three processes with their associated frames will be de
scribed. First comes the master window, then the monitor window and finally the de
bugger window.

Remarks:

• Note that a special chapter in the ProLog User’s Guide is devoted to the use
of the Windowing Debugger.

• In order to conform to the X Standard, the windowing environment of
ProLog is described in its XView version. A SunView version is also
available with the same functionality as explained in the following pages.

8-4 November 1990

ProLog by BIM - 3.0 - Windowing Environment XView - Master window

1.2 Master window

As previously stated, the master window is the window in which the ProLog engine
was started up, being in most cases either a shelltool or a cmdtool.

0 cmdtool -/b in/csh

% BIMprolog
Pro Log by BIM - release 3,0 for 5un4 - 01 -Nov-1330
7'-
'

This window will continue its role as Standard input and output channel. This means
that every program interaction goes via this window. Also, the top-level of the engine
uses this window as communication port. Queries have to be entered in it, and the an-
swers are given in the same window.

When the debugger window is not active, the master window also plays the role of de
bugger interaction window. All commands to the debugger and all trace information
given by the debugger, use the same window.

If the debugger window is active, all debugger interaction will be channeled through
that window instead of going via the master window.

November 1990 8-5

XView - Monitor window ProLog by BIM - 3.0 - Windowing Environment

1.3 Monitor window

S ta tu s report

The purpose of the monitor window is to provide some means of monitoring the system
through a user-friendly interface instead of having to type in whole sequences of goals.

It offers a number of predicates implemented with Windows and buttons. This eases the
monitoring of the Operation mode of the system.

Another adv antage over normal typed-in queries, is the capability of asynchronous in-
teractions. One can easily change the system’s Operation mode during debugging, with
out having to abort the execution or enter the prolog-call mode.

The base frame of the monitor window contains a set of pop-up buttons, that open a sub-

^ 0 Pro Log by BIM - Monitor ^

(C h d ir) Dir: ^_________ _________________________ (Info...)

(Switches,..) (T a b l e s . (Predicates,,, J (Files...) (Debugger...)

^ / b i m 4 2 / p r o l o g / d a n i _______________________________ A w a it Q u e ry j

window with available commands on the indicated topic, Each topic will be described
separately in the following sections.

In the right corner of the monitor reports the current system status. This can be one of
the following :

Await Query

The system is waiting at the top-level for a query (or any clause) to be
entered. This suggests that you can use the master window for inter
action.

Running j

The system is executing a query. In this state, it is impossible to start
another query or to enter a clause.
Interactions with the system are not possible, except for interrupts. If
the execution is in debug mode, interactions can be enabled when the
execution of the query is suspended.

8 - 6 November 1990

ProLog by BIM - 3.0 - Windowing Environment XView - Monitor window

W orking directory

Ly J Pro Log by BIM - Monitor

(chdir) D ir:^____________________________________

(Switches,.._) (Tables... J (Predicates... J (Files... j

/bim42/prolog/dani

The current working directory of the engine is indicated in the left bottom corner of the
monitor.

The working directory can be changed by entering a relative path in the Dir : field , hit-
ting <CR> and clicking the Chdir button. As a result, the current directory will be
changed with this relative value (if this is possible and allowed) and the value will be
removed.

Taking the frame from the figure above, when the name ’ project’ is typed in the ’Dir:’
field and the Chdir button is pressed, the command

% cd project

is executed, changing the current directory to

/bim42/pr olog/dani/pr oj eet

The Dir : field will be erased.

This setting of the working directory has effect on the whole ProLog system. All active
Windows will have their current directory changed accordingly.

November 1990 8-7

XView - Monitor window ProLog by BIM - 3.0 - Windowing Environment

Switches

(Switches...)
By pressing the Switches button, a graphical implementation of the builtin predicate

please/2 is popped-up.

iS Switches

(Apply]) (Reset])

B f warn

B f showsolution

B j querymode

□ compatibili ty

□ debugeode

B f eval

B f atomescape

f o r m a tre a ! %,15^

writedepth -1 S r !

□ write module

Bf write quotes

□ ■write prefix

B j writef lush

B j readeoffa.il

readeofehar -1 S r i
read eof atom end_,of_file

B f env monitor

□ envdebug

The toggle options are represented
by toggle buttons.
The value options have a value
field that can be edited.

Clicking a toggle value switches
the values on and off. A numeric
value button (e.g. writedepth) can
be increased or decreased by
pushing the up or down arrow. It
can also be changed by editing the
value field. The other options can
be changed by editing the value
field attached to that option.
The change s which were made by
clicking or editing value fields are
n n 1 \ r o r > r \ 1 i a r l o n r l o a n t t n , t l i a a n m n a 'U'JLJLXJ Cipp 1 1 Cll na OVlll LU1 LIJLV̂

when the Apply button is pushed.
The Reset button resets the state of
the window and unsets the changes
which where not yet applied.

November 1990

ProLogbyBIM- 3.0 - Windowing Environment XView - Monitor window

Tables

C Tables.,._)

By pressing the Tables button , the tables window is popped up.

This Tables window represents graphically the builtin predicate table/2. It has one tog
gle button for the option wam and one numeric button for the option time. The rest of
the window reflects the current table size options of the different visible tables used by
the ProLog system.

© Tables

(Apply j (ResetJ (Refresh j

gj' warn

time %____ R ^ l

Base Thresh Expand Lim it Size Usage

Heap 32 k 25p 1 00 p 1 rn 32 k 4

Stack 32 k 25 p 10ÜP 1 m 32k 44

Data 4k 0 0 1 m 4k 783

Functors 2k 0 0 1 rn 2k 513

Interpr Code 1 6 k 0 0 1 m 16 k 5117

Compiled Code 1 Bk 0 0 1 rn 1 Bk 2509

Record Keys 2k 0 0 1 rn 2k o ■

Backup Heap 8k 0 0 1 rn 8k 0

November 1990 8-9

XView - Monitor window ProLog by BIM - 3.0 - Windowing Environment

The value of warn can be switched by pushing its toggle button.

BI warn

The value of time can be changed by the numeric button attached to it.

time 0_____M H

The parameters of the different tables that are underlined can be changed by editing
their value.

25 p 100 Pi 1 rn

X
Note that in this release only the Heap and the Stack are expandable.

(Apply-) (Reset} (Refresh)

All changes made are only active when the Apply button is pushed.

With the Reset button, the original state of the window can be set.

Pushing the Refresh button shows the values of the different parameters at that time.
The Refresh button can be pushed when a query is active.

8-10 November 1990

ProLog by BIM - 3.0 - Windowing Environment XView - Monitor window

P redicates

(Predicates...)

A possible configuration of the Predicates pop-up window is given in the figures
below.

£& Current Predicates

(Listing) (Refresh")

Module : Selection :

Predicate :

\ : ■ % ... i/ : + -
S exchge_var/3
D f r e e _ m e m o r y / 2
D inv_funct/2
D mod_pointer/3

The window contains two selection fields: one for the module and one for the predicate
classes. The lower part of the window displays the list of selected predicates.

All predicates that are displayed belong to a single module. It is not possible to select
predicates from several modules simultaneously.

November 1990 8-11

XView - Monitor window ProLog by BIM - 3.0 - Windowing Environment

Selection of the module is done by clicking the desired module in the modules subwin-
dow. All currently known modules are given in this window.

Module :

<global>
system

A second selection criterion is the predicate dass. The Selection window gives an Over
View of the different classes.

Selection
Builtin

Static

Dynamic

External

Data Base

Hidden

Debug coded

The first five classes are disjunctive collections of predicates. A built-in predicate is
assumed to be only built-in and not static or dynamic or anything else, and so on.

The two last items overlap with the other classes. A hidden predicate can be static or
dynamic. Debug coded predicates form a subclass of the dynamic predicates.

The selections can be mixed to include several classes of predicates at once.

8-12 November 1990

ProLog by BIM - 3.0 - Windowing Environment XView - Monitor window

Predicate :

f 3 '■< 3

S exchge_var/3
D f r e e _ m e m o r y / 2
D inu_funct/2
D mod_pointer/3

In the list of selected predicates, the dass a predicate belongs to is indicated by the cor
responding abbreviation in the left column. Hidden predicates are displayed in grayed-
out font. Debug coded predicates are indicated by using a bold font.

The example in the figure has static and dynamic predicates selected. Hidden
predicates are also requested for. Because dynamic predicates are selected, the debug
coded predicates are also shown. For example, freejnemoryll is a debug coded
predicate. The predicate exchge_var/3 is a static predicate and edit_var/l is a dynamic
and hidden predicate.

The refresh button should be used whenever important changes to the ProLog data base
are made. Adding new predicates or deleting existing ones, doesn’t change the list of
selected predicates automatically. Another use of refresh is when the selection of pred
icates has been changed.

(Listing)

The button labeled listing invokes the builtin listing/l with as argument the selected
predicate. This is the predicate in the field Predicate which can be entered either man-
ually by typing it in or copying it from another window. It can also be copied automat
ically by clciking it in the predicate list with the left mouse button.

Predicate: inv_funct/2

: : % . .. : ■■ :
S exchge_uar/3
D f r e e _ m e m o r y / 2
D iny_fur^£t/2
D mod_pöfoter/3

November 1990 8-13

XView - Monitor window ProLog by BIM - 3.0 - Windowing Environment

F iles
This button pops up the Files window that provides an easy way to browse, compile,

(_ Files. J consult and reconsult files.

£9 Files

(Consult") (Reconsultj (Refresh}

Compiler options Default from [v| Previous compilation

—
-c

-

-d
-

-e
-

-P
-

-w
-

-x
—

+ + + + + + +

Dir : / u s r/e x p ort/ h o rn e / p ro I og/T O P Q

File : da.ta_conversion.prxj,_________

Pattern : * pro______________________

color_edit.xy.pro
colors.sy.pro
d a t a _ c o n y e r s i o n. p r o
general
main.pro
spain
sunphigs.pro
topo.pro
topo_cost_rep.pro
topo_def_win.pro
topo_.fi le.pro

The upper part of the window provides some control facilities. The lower part contains
the list of source files and subdirectories in the specified directory.

8-14 November 1990

ProLog by BIM - 3.0 - Windowing Environment XView - Monitor window

Dir: /u5r/export /home/proIog/TOPO

File : data_conversion.pr^:,

Pattern : * pro____________ ____

The current directory can be modified by editing the Dir: field (and clicking the refresh
button) or by clicking on a directory name (displayed in boldface) in the list of source
files. The File : field contains the selected file. It is normally selected from the file list
by clicking it with the left mouse button. The field can also be edited. The Pattern:
field allows to reduce the number of files in the browser. Only the files matching the
pattern will be displayed.

At the top of the control panel, the compiler options can be set.
The default options can be taken either from the previous compilation of the file

Default from 0 Previous compilation

or from the current engine options.

Default from Ijëj Current options

Whatever the selected default is, these default options are always overwritten by the op
tions (-a[lldynamic], -c[ompatibility], -d[ebug], -e[valuation], -p [operators], -w[arn-
ing], -x [atomescape]) set with the choices "no-change / off / on".

-c -d -e -P -w - x

— — — —■ — —

+ + + + + + +

(Consult j (Reconsult j

The buttons Consult and Reconsult invoke the builtins consult/1 and reconsult/1 re-
spectively. Their argument is constructed from the compiler option list and from the
directory and file name fields. Beware that the file is not consulted immediately as the
button is released. It might take some seconds to load big files.

November 1990 8-15

XView - Monitor window ProLog by BIM - 3.0 - Windowing Environment

D eb u g g er

(Debugger... ji

The Debugger pop-up window is the most extended one. Therefore it is divided into
three logical regions : one for general options, one for stepping options and one for trace
zooming facilities.

iS Debugger Control
General Options Stepping Options

(’ Apply) (ResetJ Mode : | Off j Trace | Debug | Analyze |

B prompt

□ cut

□ tracerecord

tracedepth 1000Q,l*H

writedepth -1 |*b;j

□ write module

□ writequotes

□ write prefix

Showpotts : | ? | | > | | + | | < | | - |

Leash : [7] [T] [7] [7] (7~ |

Spydefault: | ? | | > | | + | | < | | - |

fSpT) (Nospy')

Predicate : inv_funct/2

Trace Zooming

Base : 16800

From : 16821

To : 16838

Depth : V___ H f r

o

■fr

(Zoomin j (Zoomld j

Each of these regions will be discussed separately in the following paragraphs.

8-16 November 1990

ProLog by BIM - 3.0 - Windowing Environment XView - Monitor window

G en era l op tions
The general options are the graphical equivalent of the debug/2 built-in. Each toggle
option is represented by a button and each value option has a value field.

General Options

(Apply) (Reset)

gr prompt

□ cut

□ tracerecord

tracedepth 1000Q J*M

writedepth ^1____ 0 3

□ write module

□ write quotes

O write prefix

Options can be changed by clicking the corresponding toggle button or by editing the
value and hitting return. Numeric values can be increased or decreased by using their
associated arrows.

(Apply) (Reset)

All changes made are only active when the Apply button is pushed.

With the Reset button, the original state of the window can be set.

November 1990 8-17

XView - Monitor window ProLog by BIM - 3.0 - Windowing Environment

S te p p in g op tions

Stepping Options

Mode

Showports

Leash

Spydefault

| Off | Trace | Debug | Analyze |

I ? 1 1 ? 1 1 + 1 I < 11 ~ I

m m m m □

Spy

Predicate inv_funct/2

The first item sets the debugger mode. The debugger can be switched off, in which case
the engine cxccutcs queries in normal mode. It can be in either trace or debug mode,
which is the same as when the builtin predicates trace/0 or debug/0 are invoked. The
last mode is analyze, which is the mode that results from calling the builtin keeptrace/0.

The three following items provide the builtin predicates showports/1, leash/l and spy
default/l. The five ports are represented by their symbolic abbreviation :

? call port
> unify port
+ exit port
< redo port
- fail port

Changing the settings can simply be done by clicking on the port that must be switched.

The other items supply the spy/2 and nospy/2 builtin predicates. The field with label
Predicate : holds the predicate whose spies are displayed and can be adapted. It can be
filled in by editing the field or by clicking a predicate in the predicate list. Ports of the
predicate that have a spy point on them, are selected. Spies on separate ports can be
switched by clicking the ports. The default spy setting can be applied by using the but
tons Spy and Nospy to set or unset spies.

8-18 November 1990

ProLog by BIM - 3.0 - Windowing Environment XView - Monitor window

T race zo o m in g
The lower part of the debugger control panel contains provisions for zooming through
the trace. This corresponds to the built-ins zoomln/2 and zoomld/2. These can be ac-
tivated by pressing the appropriate buttons.

Trace Zooming

Base : 12000 —— Tl— " — - - - ' ~ — ---■
From : 12100 — — Hl h ' ~ ~ ~ ■ - = ■

To : 12200 — — — — Q- = ■

Depth : 11̂ (Zoomin j (Zoom ld)

The arguments that will be used, are retrieved from the sliders. The From and To slid-
ers give the first and second argument for zoomln/2. The From and Depth sliders are
used for the arguments of zoomld/2.

The Base slider is used to set a base value for the From and To sliders. As it would be
impossible to represent the whole range of trace lines in a single slider (there can be
many thousands of lines), the sliders only have a range of 300 lines. This is the maxi
mum range where each line number can still be selected. To be able to zoom through
higher numbered trace lines, the minimum value of these ranges can be set with the
Base slider.

In the figure, the base value is set to 12000. This implies that the range of the other slid
ers goes from 12000 through 12300. They are currently set to 12100 and 12200.

November 1990 8-19

XView - Debugger window ProLog by BIM - 3.0 - Windowing Environment

1.4 Debugger window

W indow layou t

status panel

source window

command panel

command window

The debugger window consists o f :

status panel
This panel holds status information.

source window
A text window (not editable) containing the program source.

command panel
A selection of debugger commands can be found in this panel,

command window
Output from and input to the debugger goes through this text window. (It can also be
edited).

8-20 November 1990

ProLogbyBIM- 3.0 - Windowing Environment XView - Debugger window

S ta tu s p a n e l

Pro Log by BIM - Debugger
Sto pped in file : h e ra 1 / d e m os, x v / h a n o i b, p r o Pre d : Q i z o n ta I _ to/5 Line: 517
Displayed file : heral/demos.xv/hanoib.pro Lines: 508-519

r m

The first line gives information on the current break point. It States in which file and on
which line execution has stopped. Moreover, the currently active predicate is men-
tioned.

The second line indicates what file is displayed in the source window and also the range
of the displayed lines.

C o m m a n d p a n e l

(print) (step) (next J (-so nt j (stop at) (stop in) (u p j (status) (clear)

The command panel is empty in nodebug mode. In the other modes it holds a set of
buttons that represent the commands that are available in that mode. There is also a
pop-up menu with less frequently used commands.

Which commands are displayed as buttons and which on the menu, and in what order,
is customizable through the defaults facilities of the chosen windowing system (see also
the section on defaults). The buttons an menu items can be changed temporarily during
a session with the command button, unbutton, menu, unmenu.

For commands that take an argument, the argument must be selected before pressing the
button.

Any string type arguments can be selected by indicating a single letter of the string.
This is automatically expanded to include the whole string (as long as it doesn’t contain
special characters.).

A line number is formed by selecting the line in the source window.

When a predicate is needed as an argument, it should be selected with its name/arity. If
only the name is selected, a 7’ will be appended and the arity must be entered manually.

There is one button, labeled invest in analyze mode that acts differently from the others.
It is used to go down one level in the execution tree. Therefore the number of the sub
goal must be entered. This can be done by typing it in the command window or by in
dicating the line that contains that subgoal in the same window.

November 1990 8-21

XView - Debugger window ProLog by BIM - 3.0 - Windowing Environment

So u rce w indow
The source window is used to display the program source during debugging. Whenever
the execution is suspended it is updated to display the line where the execution is
stopped. This can be either at a break point, or after a stepwise continuation (with the
commands step or next). If the predicate in which the execution is stopped, resides in
another file than the one displayed, that file is automatically loaded.

The position of the execution suspension is indicated by a black arrow, as in the follow
ing picture.

■frhorizontal_step({ Left/Right Movement Interface } 15 3 .

This can be a line either containing a clause head (when execution reached a unify port),
or a line containing a subgoal call (for other ports).

In the same window, all break points that are set, are indicated by a stop sign.

move_horizontal_disk(_disk , _from , _to , _height 3
horizontal_step(_hor_step 3,
pin_centre(_from , _from_column 3,

*Ppin_centre(_to , _to_column 3,
_step is _hor_step * sigriC _to_column - _from_columri 3,
move_horizontal_toC _disk , _from_column , _to_column , _step , _height 3 .

At every moment during a suspension of the execution, the line where that suspension
occurred, can be displayed in the source window. Therefore, the show command can be
used. This displays the line in the window, indicated by a hollow arrow.

movejiorizontal_disk(_disk , _from , _to , _height 3
c^horizonta1_step(_hor_step 3f

This can be used also in combination with trace line oriented debugging. When the ex
ecution is stopped at a spy point, or after a stepping command, the source window is not
automatically updated. If the user nevertheless wishes to see the corresponding source
line, the show command can be used to this purpose.

Another use of this command is to reorientate after having scrolled through the source
text.

It is also possible to ask for the source of any predicate by using the pred command.
This brings the first clause of the desired predicate in the source window, pointed to by
a hollow arrow.

8-22 November 1990

ProLog by BIM - 3.0 - Windowing Environment XView - Debugger window

At a break point, one can print out the current value of a variable. The easiest way to do
so is by pointing to the variable in the source window and then pressing the print button.

move_horizorital_diskC _disk , _from , _to , _height 3
hori zontal_step(_hor_step 3,

■►pin_centreC ■ ™ üi , _früm_coiumn 3,
pi n_centre<! _to , _to_column 3,
_step is _hor_step * sign(_to_column - _fronuiol umn 3,
move_horizorital_to(__disk , _from_column , _to_column , _step , Jieight

(print) (step) (next) (cont j (stop at) (stop in) (up j (status]
Command : print _froiti

_from = 1
Command : A

The only variables that can be interrogated are those in the currently focussed environ
ment. To reach variables in environments of ancestors or descendant predicates, the up
and down command can be used to move the focus to the desired environment. When
moving the focus, the source window is automatically updated to display the new fo
cussed environment. If this is not the environment where the execution is suspended,
the line is indicated with a hollow arrow instead of a black one.

November 1990 8-23

XView - Defaults ProLog by BIM - 3.0 - Windowing Environment

1.5 Defaults
Default settings of the different frames of the monitor and debugger Windows can be
changed. One can add the changed defaults to his .Xdefaults file following the X I1 con
ventions.

Following is a list of the parameters of the monitor window that can be changed.

Name Type

BIM_Prolog.monitor.font string
Font for text.

BIMProlog.monitor.font.scale enumeration
Scaling of the choosen font (value: small, medium, large, extralarge)

BIMProlog.monitor.x integer
Horizontal offset of frame on screen

BIMProlog.monitor.y integer
Vertical offset of frame on screen.

BIMProlog.monitor.info.x integer
Horizontal offset of info pop-up from monitor frame

BIMProlog.monitor.info.y integer
Vertical offset of info pop-up from monitor frame

BTM Prolog.monitor.switches.x integer
Horizontal offset of switches pop-up from monitor frame

BIMProlog.monitor.switches.y integer
Vertical offset of switches pop-up from monitor frame

BIMProlog.monitor.tables.x integer
Horizontal offset of tables pop-up from monitor frame

BIM Proiog.monitor.tables.y integer
Vertical offset of tables pop-up from monitor frame

BIM Prolog.monitor.predicates.x integer
Horizontal offset of predicates pop-up from monitor frame

BIM Prolog.monitor.predicates.y integer
Vertical offset of predicates pop-up from monitor frame

BIM_Prolog.monitor.files.x integer
Horizontal offset of files pop-up from monitor frame

BIM Prolog.monitor.files.y integer
Vertical offset of files pop-up from monitor frame

BIM Prolog.monitor.debugger.x integer
Horizontal offset of debugger pop-up from monitor frame

BIM Prolog.monitor.debugger.y integer
Vertical offset of debugger pop-up from monitor frame

8-24 November 1990

ProLog by BIM - 3.0 - Windowing Environment XView - Defaults

The following table gives an overview of the parameters for the debugger window.

Name Type

BIM_Prolog.debugger.font string
Font for text Windows

BIMProlog.debugger.font.scale enumation
Scaling of text font (Value: small, medium, large, extralarge)

BIMProlog.debugger.width integer
Width of the frame in columns

BIMProlog.debugger.srclines integer
Number of lines in the source window

BIMProIog.debugger.cmdlines integer
Number of lines in the command window

BIMProlog.debugger.x integer
Horizontal offset of frame on screen

BIMProlog.debugger.y integer
Vertical offset of frame on screen

BIMProlog.debugger.steppingbutton string
Stepping : Choose active buttons

BIMProlog.debugger.analyzebutton string
Analyze : Choose active buttons

BIMProlog.debugger.steppingmenu string
Stepping : Choose active menu items

BIMProlog.debugger.analyzemenu string
Analyze : Choose active menu items

The value of the last four parameters of the above table must be a string. This string con
tains the codes (a letter followed by a digit) for the buttons or items that must be set.
The following table shows the correspondence between the debugger commands and its
code.

November 1990 8-25

XView - Defaults ProLog by BIM - 3.0 - Windowing Environment

A B C D E F

1 alias Depth creep stop at cont print

2 command Module go on stop in next pred

3 button Quote skip status step file

4 unbutton Trace nextp clear back list

5 menu Prefix leap delete up run

6 unmenu - fail - down -

7 help - backp - show -

8 prolog - redo - - -

9 quit - where - - -

For example:

The default setting of the stepping buttons is :

F l E3 E2 E l Dl D2 ES D3 D4

means that tollowing buttons appear in the command panel of the debugger win
dow:

(print j (step) (next) (cont) (stop at) (stop in) (u p) (status j (clear)

8-26 November 1990

APPENDIX

ProLog by BIM - 3.0 - Appendix Table of Contents

Appendix

Contents

A. Messages from the engine.. 1
B. Bibliography.. 3
C. Software Performance Report... 5

November 1990 i

Table of Contents ProLog by BIM - 3.0 - Appendix

ii November 1990

ProLog by BIM - 3.0 - Appendix Error Messages - Messages from the engine

A. Messages from the
engine

There are 7 classes of error messages in the ProLog system:

SYNTAX
SEMANTIC
WARNING
OVERFLOW
BUILTIN
RUNTIME
MODE

syntax error message
semantic error message
warning message
overflow message
incorrect use of builtin predicate
run-time error message
incorrect use of mode declaration

Error messages appear by default on the screen. An option exists for the ProLog trans
later (the -1 option) to print error messages in a listing file.

The error message format is:

*** <class> <error_number> *** <error_message>

For Example:

*** BUILTIN 483 *** attempt to divide by zero

Note that warnings are the only error messages which do not stop the process of parsing,
compilation and execution of a program. However, a warning issued from a directive
means that this directive has been ignored.

The error numbers are divided in ranges. The following table lists the different ranges
and the corresponding types of messages

Internal error messages and panic error messages should be reported to your local dis-
tributor or BIM, if possible with the context in which the error occurred.

100-249
250-299
300-399
400-499
500-599
600-699
700-799
800-899
900-999

messages from the parser
compiler errors (only from BIMpcomp)
general builtin errors
specific builtin errors
I/O errors
loader errors
general errors
external language interface errors
messages from the debugger

November 1990 9-1

' Messages - Messages from the engine ProLog by BIM - 3.0 - Appendix

November 1990

ProLog by BIM - 3.0 - Appendix Bibliography - Bibliography

B. Bibliography

1. Bratko [I.].
Prolog Programming for Artificial Intelligence. Addison-Wesley Publishing
Company, 1986.

2. Campbell [J.A.].
Implementations of Prolog. Ellis Horwood Ltd, 1984.

3. Clocksin [W.F.] and Mellish [C.S.].
Programming in Prolog. Springer Verlag, 1981.

4. Coelho [H.], Cotta [J.C.] and Pereira [L.M.].
How To Solve It With Prolog. Ministerio da Habitacao e Obras Publicas Labora
tório Nacional de Engenharia Civil, Lisbon, Portugal, 1982 (3rd Edition).

5. Gray [P.M.D.]. and Lucas [R.J.].
Prolog and databases. Ellis Horwood Ltd, 1988.

6. Hogger [C.J.].
Introduction to Logic Programming. Academie Press, 1984.

7. Kowalski [R.].
Logic for Problem Solving. Artificial Intelligence Series, North Holland, 1979.

8. Shapiro [E.].
Algorithmic Program Debugging. MIT Press, 1982.

9. Sterling [L.] and Shapiro [E.].
The Art of Prolog. Advanced Programming Techniques. MIT Press, 1986.

November 1990 9-3

Bibliography - Bibliography ProLog by BIM - 3.0 - Appendix

9-4 November 1990

ProLog by BIM - 3.0 - Appendix Software Performance Report

C. Software
Performance Report

BIM will use the comments submitted on this form for the improvement of the ProLog
system and its documentation.

Is this manual understandable, usable and well organized? Please make suggestions for
improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Did you find inconsistencies between the manual and the behavior of the system?
Please specify.

November 1990 9-5

Software Performance Report ProLog by BIM - 3.0 - Appendix

Did you discover a bug in the system? Please add listings of programs and results.

Name

Organization :

Address :

Telephone :

Date

9-6 November 1990

ProLog by BIM - 3.0 - Appendix Error Messages - Messages from the engine

315 The specified argument must be an integer or a nil-terminated list of integers.

316 The specified argument must be an atom or a nil-terminated list of atoms.

317 The specified argument must be an atom, integer, real or pointer or a nil-ter
minated list of such elements.

318 The specified argument must be a nil-teminated list.

320 The specified argument must be a predicate descriptor of the form name/ari
ty.

325 None of the arguments is instantiated.

330 Integer not permitted as head of a clause.

331 Real not permitted as head of a clause.

332 Variable not permitted as head of a clause.

333 Integer not permitted as goal.

334 Real not permitted as goal.

350 Attempt to assert a static predicate.

351 A directive cannot be asserted.

352 A query cannot be asserted.

360 Attempt to redefine a builtin predicate.

361 There are too many variables in the specified term.

362 There are too many tokens in the clause to be asserted.

S p ec ific bu iltin errors

401

402

403

404

405

406

407

408

Illegal metacall: integer not permitted as goal.

Illegal metacall: real not permitted as goal.

Illegal metacall: pointer not permitted as goal.

The specified functor is not a callable predicate.

Illegal metacall: the specified predicate is unknown.

Illegal metacall: the specified predicate is unknown.

The specified builtin is unknown.

The specified argument must be ground.

November 1990 9-7

Error Messages - Messages from the engine ProLog by BIM - 3.0 - Appendix

410 The second argument must be a global atom.

411 The third argument must be a compound term with a principal functor be-
longing to the global module.

412 The argument of cut/l must be instantiated.

413 Retract: This predicate is not a dynamic predicate.

414 The specified functor is not a dynamic prdicate.

415 The maximum number of arguments for a list is exceeded

416 The specified term cannot be asserted as a data base predicate.

417 The specified functor already has a functor.

420 Second argument of **/2 must be a non-negative integer.

421 Arguments of mod/2 must be integers.

422 The second argument of op/3 must be an atom of (xfx,xfy,yfx,fx,fy,xf,yf).

423 The arguments have to be an integer in the range 1..1200, an operator type
and a functor name.

424 The first argument must be free or a single character.

425 The first argument must be a single character and the second an integer or one
of both may be free.

426 The second argument must be a nil-terminated list and first element an atom.

427 Arguments of bit operators must be integers.

428 The specified argument must be a list of characters, not longer than the long-
est atom allowed.

429 The specified argument must be a list of integer character codes, not longer
than the longest atom allowed.

430 At most one argument may be free, the others must be atoms.

431 The first argument must be a nil-terminated list of atoms.

432 The atom to be constructed is too long.

433 One of the arguments must be an atom and the other free.

434 The given or calculated start position and length arguments must be positive.

435 The arguments must be a pointer, an integer and a pointer. Only one may be
free.

439 The keys must be instantiated.

440 The specified key is already in use.

441 The specified key is already in use.

442 Add to non existing key is not allowed.

9-8 November 1990

ProLog by BIM - 3.0 - Appendix Error Messages - Messages from the engine

443 Add to non existing key is not allowed.

444 Record heap overflow.

445 Too many clause references.

446 The specified reference is not a valid clause reference.

450 The specified Key is not an acceptable key.

455 Except for this one, no error occurred previously.

456 Error in loading of error set.

457 The first argument must be an integer or a list of integers and integer pairs
(int-int). The second argument must be on or off.

458 The specified error number is out of defined error ranges.

459 The argument list for an error must consist of integers, atoms and functors
(name/arity).

460 This predicate is not suitable for dynamic indexing.

461 Illegal size for dynamic index hash table.

465 Dynamic indexing only allowed on dynamic predicates without definitions.

466 Dynamic modes are only allowed on dynamic predicates.

470 The first argument must be a symbolic signal name.

471 The second argument must be one of status/2, ignore, accept, suspend, status,
raise or clear.

472 The arguments of status/2 must be free.

473 The signal argument must be a signal name or a list of signal names.

474 A Prolog handler was installed outside of the system’s control.

475 An external handler was installed outside the system’s control. The specified
handler was the previous Prolog handler.

480 Allowed comparison : (int or real) with (int or real).

481 Atoms are not allowed in evaluable expressions.

482 Type of operands are incompatible.

483 Attempt to divide by zero.

484 Non numerical operands.

485 The result of an expression evaluation is an integer, real or atom.

486 Module zero is undefined.

November 1990 9-9

Error Messages - Messages from the engine ProLog by BIM - 3.0 - Appendix

In p u t!o u tp u t errors

L o a d er errors

490 The specified command line arguments require too much memory.

491 A command line argument number are outside the specified range.

500 The mode for opening must be w, r or a.

501 Use an atom as logical filename or a pointer.

502 This logical file not in use.

503 This logical file is already in use.

504 This file is open for output, not for input.

505 This file is open for input, not for output.

508 Unable to open this file : too many files already open.

509 Cannot open this file.

510 Standard file cannot be closed.

511 Use an atom as current stream name or a pointer.

600 Cannot find this file (neither corresponding object file).

601 Error during compilation of this file.

602 The specified predicate is not loaded.

603 During loading: no space enough to allocate dynamically the temporary table
of functors.

604 During loading: no space enough to allocate dynamically the temporary table
of constants.

605 During loading: no space enough to allocate dynamically the temporary table
of modules.

607 During loading: conflict between a static predicate and an existing predicate
with the same name and arity.

608 During loading: conflict between a dynamic predicate and an existing predi
cate with the same name and arity.

609 During loading: all definitions of a predicate must be compiled either with or
without debug option.

610 During loading of dynamic predicate: all definitions must be indexed on the
same argument.

611 During loading of dynamic predicate: all definitions must have the same

9-10 November 1990

ProLog by BIM - 3.0 - Appendix Error Messages - Messages from the engine

modes.

612 The specified predicate changed from static to dynamic. This may cause
problems for existing calls of the predicate from static code.

620 During loading: BIM_Prolog and the object file have a different version
number.

621 Unable to open the specified file.

622 Unable to refind the previous position in the specified file.

623 Skipping bad compiler option.

624 The specified file cannot be consulted with this system.

630 Restore option needs a file name to restore from.

640 Unable to open this file for state saving.

641 Unable to open saved state file.

642 Unable to find the initialised data for thge specified file.

651 Too many source files active.

652 Not enough memory for keeping source line information.

653 This file has already been consulted; source line information may be incor
rect.

681 Not enough resources for starting the window.

682 Could not fork off the window.

683 Monitor window has died.

684 Debugger window has died.

685 Cannot execute monitor.

686 Cannot execute debugger.

G enera l errors

700 Illegal call: unknown predicate.

701 This predicate cannot be called.

702 A too complex structure was encountered during garbage collection.

703 Unable to open the BIM_Prolog system file.

November 1990 9-11

Error Messages - Messages from the engine ProLog by BIM - 3.0 - Appendix

710 The hashtable used when looking up constants is full.

711 The table of constants is full.

712 The hashtable used when looking up functors is full.

713 The table of functors is full.

714 The table of characters is full.

715 Not enough code space recollected.

716 The table of modules is full.

717 Execution stopped : overflow of the local stack.

718 Execution stopped : overflow of the heap.

719 The hash table of the internal data base is full.

720 The internal data base heap is full.

721 The internal data base variable table is full.

730 The structure is too deeply nested. A maximum depth of 500 is allowed.

740 There are too many clauses for this predicate .

741 Not enough memory for dynamic hash table.

750 Undefined input argument.

751 Non-undefined output argument.

760 Input mode error in argument.

761 Output mode error in argument.

9-12 November 1990

ProLog by BIM - 3.0 - Appendix Error Messages - Messages from External Language Interface

A 3 Messages from
External Language

Interface

800 External interface type conflict in one parameter of this predicate.

801 Uninstantiated input parameter for external predicate or function.

802 External output parameter of this predicate must be instantiated to a list.

803 Untyped parameter of external predicate has illegal type.

804 External parameter of structure array for this predicate must be a non-empty
list or a structured term.

805 External parameter of structure list for this predicate must be flat and ending
on nil.

806 Unification upon return from external function has failed.

807 Too many parameters for external function call.

808 Not enough memory for external interface buffer.

809 The specified external routine is not a predicate.

810 The specified external routine is not a function.

811 Parameters for this predicate cannot have the list structure.

812 Untyped input parameters for this predicate are not allowed.

813 An output parameter of this predicate was instantiated to the wrong type.

814 An output parameter of this predicate has not been instantiated.

815 Not enough memory for output array parameter.

816 Try to call something that is not a predicate.

817 Not enough memory for external call of a predicate.

818 Try to find a next solution or end a non-active iteration.

819 The specified string could not be saved.

820 Not enough memory during external module load.

821 Dynamic linking has failed.

822 Unable to open temporary external load module.

823 Too many external predicates.

824 Too many external parameter declarations.

825 Trying to redefine this predicate as external predicate.

826 External routine not loaded.

827 Too long list of objects to link.

828 Too many external protected terms.

November 1990 9-13

Error Messages - Messages from External Language Interface ProLog by BIM - 3.0 - Appendix

829 External protected terms will be destroyed.

836 The specified call required too much memory.

837 External output arguments cannot be protected during garbage collection.

840 Arithmetic on pointers cannot succeed.

841 Atoms not allowed as expression arguments.

842 Functors not allowed as expression arguments.

843 Illegal term as expression arguments.

844 Illegal type for the specified term.

845 The specified argument cannot be retrieved.

846 Too many external protected terms.

847 External protected terms will be destroyed.

850 Not enough memory for external predicates.

851 Dynamic linking has failed.

852 Unable to open temporary external load module.

853 Not enough memory for dynamic linking.

854 Not enough memory for restoring external predicates.

855 The specified predicate cannot be redefined.

856 The specified routine cannot be loaded.

857 The specified symbol table is incompatible with the running BIM_Prolog.

9-14 November 1990

ProLog by BIM - 3.0 - Appendix Error Messages - Messages from Debugger

A.4 Messages from
Debugger

900 Bad (list of) port name(s) in this argument.

901 Give predicates in the form name/arity .

902 Unknown predicate.

903 Unknown predicate.

904 Bad predicate specification.

905 The first argument must be an integer between 0 and 2.

906 Unable to open temporary files for the debugger.

907 Not that many lines in the trace.

908 No trace has been recorded for analysis.

909 Too many subgoals in predicate to analyze.

910 Not enough memory to keep more lines in the trace (aborting keeptrace).

911 This file does not contain the required source line information.

912 This source file has not yet been consulted.

913 Not enough memory to set more break points.

914 Too many defined aliases.

915 Too many user defined commands.

916 Bad argument type specifier.

917 Bad argument type modifier.

918 Cannot read the specified source file.

919 No spies set.

November 1990 9-15

Error Messages - Messages from Debugger ProLog by BIM - 3.0 - Appendix

9-16 November 1990

ProLog by BIM - 3.0 - Appendix Bibliography - Bibliography

B.l Bibliography

1. Bratko [I.].
Prolog Programming for Artificial Intelligence. Addison-Wesley Publishing
Company, 1986.

2. Campbell [J.A.].
Implementations of Prolog. Ellis Horwood Ltd, 1984.

3. Clocksin [W.F.] and Mellish [C.S.].
Programming in Prolog. Springer Verlag, 1981.

4. Coelho [H.], Cotta [J.C.] and Pereira [L.M.].
How To Solve It With Prolog. Ministerio da Habitacao e Obras Publicas Labora
tório Nacional de Engenharia Civil, Lisbon, Portugal, 1982 (3rd Edition).

5. Gray [P.M.D.]. and Lucas [R.J.].
Prolog and databases. Ellis Horwood Ltd, 1988.

6. Hogger [C.J.].
Introduction to Logic Programming. Academie Press, 1984.

7. Kowalski [R.].
Logic for Problem Solving. Artificial Intelligence Series, North Holland, 1979.

8. Shapiro [E.].
Algorithmic Program Debugging. MIT Press, 1982.

9. Sterling [L.] and Shapiro [E.].
The Art of Prolog. Advanced Programming Techniques. MIT Press, 1986.

November 1990 9-17

Bibliography - Bibliography ProLog by BIM - 3.0 - Appendix

(This page intentionally left blank.)

9-18 November 1990

ProLog by BIM - 3.0 - Appendix Software Performance Report

C.l Software
Performance Report

BIM will use the comments submitted on this form for the improvement of the ProLog
system and its documentation.

Is this manual understandable, usable and well organized? Please make suggestions for
improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Did you find inconsistencies between the manual and the behaviour of the system?
Please specify.

November 1990 9-19

Software Performance Report ProLog by BIM - 3.0 - Appendix

Did you discover a bug in the system? Please add listings of programs and results.

Name :

Organization

Address :

Telephone :

Date :

9-20 November 1990

	Kopie van 1990 Prolog [408].pdf
	00540947.tif
	00540948.tif
	05540541.tif
	05540542.tif
	05540543.tif
	05540544.tif
	05540545.tif
	05540546.tif
	05540547.tif
	05540548.tif
	05540549.tif
	05540550.tif
	05540551.tif
	05540552.tif
	05540553.tif
	05540554.tif
	05540555.tif
	05540556.tif
	05540557.tif
	05540558.tif
	05540559.tif
	05540560.tif
	05540561.tif
	05540562.tif
	05540563.tif
	05540564.tif
	05540565.tif
	05540566.tif
	05540567.tif
	05540568.tif
	05540569.tif
	05540570.tif
	05540571.tif
	05540572.tif
	05540573.tif
	05540574.tif
	05540575.tif
	05540576.tif
	05540577.tif
	05540578.tif
	05540579.tif
	05540580.tif
	05540581.tif
	05540582.tif
	05540583.tif
	05540584.tif
	05540585.tif
	05540586.tif
	05540587.tif
	05540588.tif
	05540589.tif
	05540590.tif
	05540591.tif
	05540592.tif
	05540593.tif
	05540594.tif
	05540595.tif
	05540596.tif
	05540597.tif
	05540598.tif
	05540599.tif
	05540600.tif
	05540601.tif
	05540602.tif
	05540603.tif
	05540604.tif
	05540605.tif
	05540606.tif
	05540607.tif
	05540608.tif
	05540609.tif
	05540610.tif
	05540611.tif
	05540612.tif
	05540613.tif
	05540614.tif
	05540615.tif
	05540616.tif
	05540617.tif
	05540618.tif
	05540619.tif
	05540620.tif
	05540621.tif
	05540622.tif
	05540623.tif
	05540624.tif
	05540625.tif
	05540626.tif
	05540627.tif
	05540628.tif
	05540629.tif
	05540630.tif
	05540631.tif
	05540632.tif
	05540633.tif
	05540634.tif
	05540635.tif
	05540636.tif
	05540637.tif
	05540638.tif
	05540639.tif
	05540640.tif
	05540641.tif
	05540642.tif
	05540643.tif
	05540644.tif
	05540645.tif
	05540646.tif
	05540647.tif
	05540648.tif
	05540649.tif
	05540650.tif
	05540651.tif
	05540652.tif
	05540653.tif
	05540654.tif
	05540655.tif
	05540656.tif
	05540657.tif
	05540658.tif
	05540659.tif
	05540660.tif
	05540661.tif
	05540662.tif
	05540663.tif
	05540664.tif
	05540665.tif
	05540666.tif
	05540667.tif
	05540668.tif
	05540669.tif
	05540670.tif
	05540671.tif
	05540672.tif
	05540673.tif
	05540674.tif
	05540675.tif
	05540676.tif
	05540677.tif
	05540678.tif
	05540679.tif
	05540680.tif
	05540681.tif
	05540682.tif
	05540683.tif
	05540684.tif
	05540685.tif
	05540686.tif
	05540687.tif
	05540688.tif
	05540689.tif
	05540690.tif
	05540691.tif
	05540692.tif
	05540693.tif
	05540694.tif
	05540695.tif
	05540696.tif
	05540697.tif
	05540698.tif
	05540699.tif
	05540700.tif
	05540701.tif
	05540702.tif
	05540703.tif
	05540704.tif
	05540705.tif
	05540706.tif
	05540707.tif
	05540708.tif
	05540709.tif
	05540710.tif
	05540711.tif
	05540712.tif
	05540713.tif
	05540714.tif
	05540715.tif
	05540716.tif
	05540717.tif
	05540718.tif
	05540719.tif
	05540720.tif
	05540721.tif
	05540722.tif
	05540723.tif
	05540724.tif
	05540725.tif
	05540726.tif
	05540727.tif
	05540728.tif
	05540729.tif
	05540730.tif
	05540731.tif
	05540732.tif
	05540733.tif
	05540734.tif
	05540735.tif
	05540736.tif
	05540737.tif
	05540738.tif
	05540739.tif
	05540740.tif
	05540741.tif
	05540742.tif
	05540743.tif
	05540744.tif
	05540745.tif
	05540746.tif
	05540747.tif
	05540748.tif
	05540749.tif
	05540750.tif
	05540751.tif
	05540752.tif
	05540753.tif
	05540754.tif
	05540755.tif
	05540756.tif
	05540757.tif
	05540758.tif
	05540759.tif
	05540760.tif
	05540761.tif
	05540762.tif
	05540763.tif
	05540764.tif
	05540765.tif
	05540766.tif
	05540767.tif
	05540768.tif
	05540769.tif
	05540770.tif
	05540771.tif
	05540772.tif
	05540773.tif
	05540774.tif
	05540775.tif
	05540776.tif
	05540777.tif
	05540778.tif
	05540779.tif
	05540780.tif
	05540781.tif
	05540782.tif
	05540783.tif
	05540784.tif
	05540785.tif
	05540786.tif
	05540787.tif
	05540788.tif
	05540789.tif
	05540790.tif
	05540791.tif
	05540792.tif
	05540793.tif
	05540794.tif
	05540795.tif
	05540796.tif
	05540797.tif
	05540798.tif
	05540799.tif
	05540800.tif
	05540801.tif
	05540802.tif
	05540803.tif
	05540804.tif
	05540805.tif
	05540806.tif
	05540807.tif
	05540808.tif
	05540809.tif
	05540810.tif
	05540811.tif
	05540812.tif
	05540813.tif
	05540814.tif
	05540815.tif
	05540816.tif
	05540817.tif
	05540818.tif
	05540819.tif
	05540820.tif
	05540821.tif
	05540822.tif
	05540823.tif
	05540824.tif
	05540825.tif
	05540826.tif
	05540827.tif
	05540828.tif
	05540829.tif
	05540830.tif
	05540831.tif
	05540832.tif
	05540833.tif
	05540834.tif
	05540835.tif
	05540836.tif
	05540837.tif
	05540838.tif
	05540839.tif
	05540840.tif
	05540841.tif
	05540842.tif
	05540843.tif
	05540844.tif
	05540845.tif
	05540846.tif
	05540847.tif
	05540848.tif
	05540849.tif
	05540850.tif
	05540851.tif
	05540852.tif
	05540853.tif
	05540854.tif
	05540855.tif
	05540856.tif
	05540857.tif
	05540858.tif
	05540859.tif
	05540860.tif
	05540861.tif
	05540862.tif
	05540863.tif
	05540864.tif
	05540865.tif
	05540866.tif
	05540867.tif
	05540868.tif
	05540869.tif
	05540870.tif
	05540871.tif
	05540872.tif
	05540873.tif
	05540874.tif
	05540875.tif
	05540876.tif
	05540877.tif
	05540878.tif
	05540879.tif
	05540880.tif
	05540881.tif
	05540882.tif
	05540883.tif
	05540884.tif
	05540885.tif
	05540886.tif
	05540887.tif
	05540888.tif
	05540889.tif
	05540890.tif
	05540891.tif
	05540892.tif
	05540893.tif
	05540894.tif
	05540895.tif
	05540896.tif
	05540897.tif
	05540898.tif
	05540899.tif
	05540900.tif
	05540901.tif
	05540902.tif
	05540903.tif
	05540904.tif
	05540905.tif
	05540906.tif
	05540907.tif
	05540908.tif
	05540909.tif
	05540910.tif
	05540911.tif
	05540912.tif
	05540913.tif
	05540914.tif
	05540915.tif
	05540916.tif
	05540917.tif
	05540918.tif
	05540919.tif
	05540920.tif
	05540921.tif
	05540922.tif
	05540923.tif
	05540924.tif
	05540925.tif
	05540926.tif
	05540927.tif
	05540928.tif
	05540929.tif
	05540930.tif
	05540931.tif
	05540932.tif
	05540933.tif
	05540934.tif
	05540935.tif
	05540936.tif
	05540937.tif
	05540938.tif
	05540939.tif
	05540940.tif
	05540941.tif
	05540942.tif
	05540943.tif
	05540944.tif
	05540945.tif
	05540946.tif

